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Abstract

The dynamic properties of micro based stochastic macro models are often analyzed

through a linearization around the associated deterministic steady state. Recent liter-

ature has investigated the errors made by such a deterministic approximation. Com-

plementary to this literature we investigate how the linearization a¤ects the stochastic

properties of the original model. We consider a simple real business cycle model with

noisy learning by doing. The solution has a stationary distribution that exhibits mo-

ment failure and has an unbounded support. The linear approximation, however,

yields a stationary distribution with possibly a bounded support and all moments

�nite.
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1 Introduction

The dynamic properties of micro based stochastic macro models are often analyzed through

a linearization around the associated deterministic steady state. In the seminal paper on

real business cycles (RBC) Kydland and Prescott (1982) employed �rst order approxima-

tions to solve their dynamic, stochastic general equilibrium (DSGE) model. This method

has become highly popular in analyzing DSGE�s. Campbell (1994) and Uhlig (1997) pro-

vide overviews on how to perform the linearization of the dynamic micro based stochastic

macro models. A number of papers has investigated the accuracy of the log linear approx-

imation, by looking at the deterministic part of the approximate solution. Tesar (1995)

and Kim (1997) prove that the loglinear approximation method may create welfare rever-

sals, to the extent that the incomplete-markets economy produces a higher level of welfare

than the complete-markets economy. Jin and Judd (2002) therefore recommend the use

of second order perturbation methods. Sutherland (2002) and Kim and Kim (2003) have

developed a bias selection method which can be as accurate as the perturbation method,

but which requires less computational e¤ort. The performance of the linear approximation

in stochastic neoclassical growth models is studied by Dotsey and Mao (1992), and more

recently in Arouba et al. (2006) and Fernandez-Villaverde and Rubio-Ramirez (2005).

We contribute to this literature by showing how the stochastic properties of the ap-

proximate solution di¤er from the equilibrium of the non-linear model. In particular, we

investigate the simplest model in the business cycle literature with �xed labour supply,

total depreciation of capital and a log-utility function. To this we add noisy learning by

doing. The solution of the resulting stochastic di¤erence equation has a stationary dis-

tribution which exhibits moment failure and has an unbounded support. The �rst order

approximation, however, yields a stationary distribution with bounded support and all

moments �nite. Thus the linear approximation dramatically alters the stochastic proper-

ties of the model. We also consider brie�y an application from asset pricing with stochastic

volatility.

This note is organized as follows. In section 2 we analyze the RBC model and we

show that while the exact solution of the model for the log of capital follows a stationary
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distribution with unbounded support and exhibits moment failure, the approximation may

nevertheless have bounded support and all moments �nite. Section 3 further discusses

the e¤ects of linearization in the capital asset pricing model with changing conditional

volatility of the ARCH variety. Section 4 concludes.

2 Application on the real business cycle model

Log-linearization is a well known method for solving business cycle models. It has its pros

and cons, which are usually discussed in a deterministic setting. We join this literature by

showing how linearization may change the stochastic equilibrium behavior of the solution

of a dynamic RBC model.

The environment of the basic RBC model with �xed unitary labour supply and noisy

learning by doing is as follows:

1. The production function is Cobb-Douglas Yt = I�t K
1��
t , where I is technology and

K is capital.

2. With full depreciation, the next period capital equals the current period�s savings:

Kt+1 = I
�
t K

1��
t � Ct.

3. The representative agent expected utility is: U = Et[
P1
i=0 �

i log(Ct+i)].

4. Technological progress stems from learning by doing: It+1 = �t+1Y
"t+1
t , where �t > 0

and "t are random variables independently distributed with mean � and "; respec-

tively. The learning by doing e¤ect stems from the aggregate production level. This

externality is not taken into account by the individual consumer when planning his

consumption pattern.

5. The gross rate of return on a one period investment in capital Rt+1 equals the

marginal product of capital: Rt+1 = (1� �) (It+1=Kt+1)�.

This special case of a stochastic dynamic general equilibrium model with full deprecia-

tion of capital and log utility function admits an exact solution. The �rst order condition
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for utility maximization is: 1=Ct = �Et[(1 � �)I�t+1K��
t+1=Ct+1]. In order to solve the

system

1

Ct
= �Et[

(1� �)I�t+1K��
t+1

Ct+1
] (1)

Kt+1 = I
�
t K

1��
t � Ct (2)

Yt = I
�
t K

1��
t (3)

It+1 = �t+1Y
"t+1
t (4)

we guess the policy function

Ct = �I
�
t K

1��
t : (5)

Inserting (5) in (1) and using the equation for the capital accumulation process (2) deter-

mines the constant � = 1� �(1� �).

Subsequently substitute (5) and (3) into (2). This shows that the log of capital kt+1

satis�es:1

kt+1 = log �(1� �) + yt: (6)

Transform (4) into logs

it+1 = log �t+1 + "t+1yt: (7)

Advancing (3) one period, taking logarithms as well and inserting (6) and (7), we obtain

the �rst order stochastic di¤erence equation for log income:

yt+1 = (1� �) log �(1� �) + � log �t+1 + (�"t+1 + 1� �)yt: (8)

This di¤erence equation can be conveniently summarized as

Xt = At +BtXt�1; (9)

1 In this section capital letters stand for level values and small letters for log transformed variables.
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where At and Bt are i.i.d. random variables, with

At = (1� �) log �(1� �) + � log �t

and

Bt = �"t + 1� �:

Kesten (1973) provides a characterization of the stochastic steady state of the process

(9), given certain conditions. One important property of the solution is that the tail of

the stationary distribution may be asymptotic to the tail of a Pareto distribution, see

the fourth claim in Theorem 1 below. Thus the stationary distribution is characterized

by moment failure, even though the innovations may not exhibit this property; e.g. are

bounded or exponential. The following theorem collects the full statement of Kesten�s

theorem (1973, th.5):

Theorem 1 (Kesten)Consider the �rst order stochastic di¤erence equation

Xt = At +BtXt�1;

where (At; Bt), t � 1, are independent and identically distributed with absolutely continu-

ous distribution functions.

Suppose there is a � > 0 such that, E[log jB1j] < 0, E[jB1j�] = 1, E[jB1j� log+ jB1j] <

1, 0 < E[jA1j�] <1.2 Then the following hold:

1. The equation X1
d
= A1+B1X1 , X1 and (A1, B1) are independent, has a solution

unique in distribution given by X1
d
=
P1
j=1Aj

Yj�1

i=1
Bi.

2. If in (9) we take X0
d
= X1, then the process Xt is stationary.

3. No matter how the process Xt is initialized Xt
d! X1.

4. The limits limx!1 x� Pr(X1 > x) and limx!1 x� Pr(X1 < �x) exist and are �nite;

at least one of these limits is strictly positive.

2The following notation log+ jB1j = max(log jB1j ; 0) is used.
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The basic intuition for the Kesten theorem to hold is as follows.3 Kesten�s theorem

basically applies if there exists a � such that E[jB1j�] = 1. The essential idea behind this

requirement is that the multiplicative innovations should be su¢ ciently spread out to allow

realizations larger than one, such that past realization have a more than proportionate

impact on the current realization. But this should not occur too frequently, otherwise the

process becomes non-stationary. This implies that at least one of the tails of the stationary

distribution will decline according to a power-law.

Hence, when the stochastic coe¢ cients of the dynamic RBC equation given by (8)

meet the conditions above, Kesten�s theorem predicts that log income over time becomes

spread out over the positive half axis and has a distribution with a power like upper

tail. Standard macro has it that log of national income is normally distributed. Recent

evidence, however, shows that the growth rates have a heavy upper tail. See for instance,

Cumperayot and de Vries (2006) who calculate the tail index � for several macroeconomic

variables, including log income, using time series data for various countries.4

In the remainder of this section we focus on calculating the approximate solution of the

RBC equation (8) and study how it compares with the original process. When the system

of equations (1-4) does not have a closed form solution, the standard approach is to consider

a linearization of the Euler equations around the steady state of the model. For instance,

when the capital does not depreciate fully, Campbell (1994) takes the log-approximation

of the capital accumulation equation (2). We depart from this practice, since in our

model the nonlinearity stems from the learning by doing speci�cation for technological

progress. In particular, the nonlinearity is generated by two random variables that enter

multiplicatively in (7). The standard log-linearization would linearize equations that need

not be linearized, without solving the stochastic nonlinearity. Since the nonlinearity from

the stochastic learning by doing is transferred directly in the relation for log-income (8),

we take the approximation at this point.

3For the interested reader, Embrechts, Kluepelberg and Mikosch (1997, ch.8.4) contains an accessible
summary treatment.

4Recall that Pareto�s power law is derived from the observed distribution of individual income levels in
a given period, while the RBC model studied here derives the distribution of the log of national income
over time. Within the current model Pareto�s law can be captured by assuming that the random variable
� is individualized and is Pareto distributed. Note that this in no way drives the result for the distribution
of log of national income over time, as the (individualized) log� would be exponentially distributed.
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To this end, rewrite (9) as follows:

yt+1 = a+mt+1 + (b+ nt+1)yt; (10)

where a = (1��) log �(1��) +� log � and mt = � log �t �� log �, while b = �"+1��,

nt = �"t � �", such that mt and nt are mean zero random variables (assuming the mean

exists).

To eliminate the nonlinearity from equation (10) due to the multiplicative random

shock (b + nt+1), we apply a �rst order Taylor expansion around the stochastic steady

state:

yt+1 = a+mt+1 + byt +
a

1� bnt+1: (11)

If the deterministic part b of the multiplicative shock is less than one, the linearized

equation for log income (11) is a stationary AR(1) process. However, b < 1 is not a

necessary requirement for the Kesten result to hold. As b > 1 the AR(1) approximation

becomes non-stationary; but (10) may still have a stationary limit distribution.

The starkest contrast between the linearized solution and the solution to the original

model is obtained if we assume that the innovations "t and �t have a distribution with

bounded support. For example, consider mt and nt uniformly distributed on the intervals

[�m;m] and [�b; b] respectively, where it is assumed that 0 < m < a and 0 < b < 1. We

show that yt generated by (11) has a bounded support, while (10) implies an equilibrium

distribution of yt with unbounded support. Taking y0 = 0 and iterating (11) we obtain:

yt = a(

tX
i=1

bt�i) + (
tX
i=1

mib
t�i) +

a

1� b(
tX
i=1

nib
t�i): (12)

Setting mt = m and nt = b we get

yt � max yt �
a

1� b +
m

1� b +
ab

(1� b)2 : (13)

Thus yt is bounded from above.

Turning to (10), if we can show that the Kesten theorem 1 applies, it would immediately

follow that the support of the equilibrium distribution is unbounded due to the Pareto
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type tail. From the assumptions it follows that B1 is uniformly distributed on the interval

[0; 2b]. In other words we need to show that the equation in �

E [B�1 ] =

2bZ
0

t�
1

2b
dt =

(2b)�

(�+ 1)
= 1 (14)

has a strictly positive solution. This holds for any b 2 (1=2; e=2).5 For example, it can be

easily checked that the pair (�; b) = (2;
p
3=2) satis�es the equation.

The second case we consider gives less stark of a contrast if we assume that (a+mt) and

(b+ nt) are exponentially distributed random variables with respective means a and b. The

backward iteration of the process in eq. (11) implies that yt depends on two weighted sums

of exponentially distributed random variables. Proposition 1 below describes the behavior

at the limit of a weighted sum of random variables that follow a Gamma distribution.

Since the exponential distribution is a special case of the Gamma distribution, we appeal

to the this proposition to infer that the approximate solution yt follows a distribution

with exponential declining tail. The original model, however, has a solution for which the

stationary distribution exhibits power decline.

We use the remainder of the section to show that the Kesten theorem applies when

At = a+mt and Bt = b+nt are exponentially distributed. It is su¢ cient to show that the

three conditions of the Kesten theorem hold. First we argue that E[logB1] < 0. Given

that E[logB1] =
R1
0 ln (x) 1be

�x=bdx, by a transformation of variable

E[logB1] =

Z 1

0
(ln y) e�y dy + ln b

Z 1

0

1

b
e�x=bdx = �C+b ln b

if b�(0; 1), and where C denotes Euler�s constant. Clearly �C + b ln b < 0, for b < 1.

Second, we show that the main condition is ful�lled. Note that

E[B�1 ] =

Z 1

0
x�
1

b
e�x=bdx = b�

Z 1

0
y�e�ydy = b��(�+ 1)

5One needs b < e=2 for E[log jBj] = ln 2b� 1 to be negative. We are grateful to a referee to point out
that the upper bound can be as high as e=2. Note furthermore that E[jBj� log+ jBj] equals b ln 2b � b=2
and hence is �nite for b 2 (1=2; e=2); moreover, since 0 � ja+mt+1j � a + m and given the uniform
distribution of mt+1, it follows that 0 < (a�m)� < E[jAj�] < (a+m)� <1.
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Since �(2) = 1 and �(�+ 1) = �! eventually overtakes (1=b)� as � increases, the equation

E[B�1 ] = 1 has a solution. Furthermore, since

E[B� log+B] < E[B�+1] = b�+1�(�+ 2) <1

E[jBj� log+ jBj] <1 is satis�ed for b�(0; 1). Lastly, the condition 0 < E[A�] <1 follows

from a similar argument.

Thus if one analyzes the original dynamic RBC equation (8), one �nds that log income

becomes spread out over the positive half axis and, moreover, has a distribution with a

heavy Pareto upper tail. Under the same conditions however, when one starts from the

approximation (11), income either remains bounded, or exhibits exponentially thin tails.

3 Conditional volatility in the CAPM model

In this section we illustrate with another example how the linearization a¤ects the stochas-

tic properties of the original model. We consider an intertemporal version of the Capital

Asset Pricing Model (CAPM) as presented in Campbell, Lo and MacKinlay (1997, p.323

and p.494). The CAPM relates the expected return of an asset to the covariance of its

return with the market portfolio return. In a dynamic setting, when applied to the mar-

ket portfolio itself, the intertemporal CAPM model predicts that the expected market

portfolio excess returns depend linearly on the variance of market portfolio.

It has been widely observed that periods of turbulence in the stock market are generally

followed by further periods of turbulence, while periods of tranquility are followed by

periods of tranquility. The intertemporal CAPM model can account for this empirical

observation by allowing the variance of the market portfolio to be time varying. In fact,

there is ample evidence that the volatility is an autoregressive process for which the ARCH

process speci�cation is a natural choice. Moreover, the ARCH process also captures the

martingale property of the returns. The properties of the stationary solution of the ARCH

process have direct implications for the equilibrium distribution of the returns of the

market portfolio. We investigate how this equilibrium distribution is a¤ected when both

the ARCH speci�cation and its linear approximation are considered.
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Consider again the �rst order stochastic di¤erence equation (9)

Xt = At +BtXt�1:

The ARCH process is related to (9) in the following way. Consider qt = �tst, where

st � IID N(0; 1) and where the variance �2t of qt is driven by its own past squared

�2t = v+wq
2
t�1; see Engle (1982). Squaring the mean equation q

2
t = �

2
t s
2
t and substituting

the variance equation in this expression, gives

q2t = vs
2
t + ws

2
t q
2
t�1: (15)

Equating q2t with Xt, vs
2
t with At and ws

2
t with Bt, yields the di¤erence equation (9).

The parameters of this di¤erence equation are random variables that follow chi square

distributions. The ARCH process is the most popular speci�cation for volatility clusters

in �nance.

We �rst investigate the properties of the linearized version of (9). Let At and Bt in

(9) have mean a and b respectively (where 0 < b < 1, by assumption), so that we may

write At = a+mt and Bt = b+ nt. Equation (9) only contains a single non-linear term.

To approximate the non-linear term BtXt�1, we take again a �rst order Taylor expansion

around the stochastic steady state with respect to Xt�1 and nt. This transforms (9) into:

Xt = a+mt + bXt�1 +
a

1� bnt: (16)

In the case of ARCH the analogous �rst order Taylor approximation will give the following

AR(1) process for q2t :

q2t = v + wq
2
t�1 +

v

1� w (s
2
t � 1) (17)

and where a = v, mt = v(s
2
t � 1), b = w and nt = w(s2t � 1).

We show that the conditions of Theorem 1 apply to the ARCH process (15). In

the case of ARCH, B1 = ws21, and we need to ascertain that there exists a � such that

E[(ws21)
�] = 1. Given the normality assumption regarding s1, we can rewrite this condition
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as follows

�(�+
1

2
) = �1=2(2w)��:

Note that for w = 1 the equation has the solution � = 1. Since for given (2w)�� is

increasing as w decreases from 1 and the gamma function is increasing in �, there exists

a solution for any 0 < w < 1 such that � > 1. For example (w; �) = (1=
p
3; 2) is a

solution. This solution implies that for w > 1=
p
3 the stationary solution of (15) has a

�nite variance (as � > 2). By the fact that Pr(X1 > x) � cx��, the r-th moment exists

as long as
R1
1 xrx���1dx is bounded, which requires r < �. The other conditions can be

veri�ed to hold as well.6

Thus the remarkable feature of the ARCH process is that while the driving random

variables have distributions with exponential type upper tails (chi-square distribution),

the linear process has a solution which is distributed with a hyperbolic type upper tail

implying moment failure. Per contrast, the approximation (17) has a distribution with all

the moments �nite. To show this, we �rst obtain a more convenient expression for q2t by

iterating (17) backwards

q2t = v
1� wt
1� w +

v

1� w

tX
i=1

wt�i(s2i � 1) + wtq20 (18)

This expression indicates that the asymptotic behavior of q2t is driven by the properties

of the limit distribution of
Pt
i=1w

t�is2i . The next proposition summarizes a result that

enables us to prove how the �rst-order approximation to the ARCH process changes the

stochastic properties of the solution.

Proposition 1 Let St =
Pt
i=1 �

i�1Qi, where Qi is a random variable with a Gamma

distribution with parameters A and B strictly positive and � is a constant in the interval

(0; 1). Then the limit distribution of St as t!1 exhibits thin tails.

Proof. A proof is available in the Appendix of the working paper version.

The chi-square distributed random variables are a particular case of gamma distrib-

6De Haan et al. (1989) �rst linked the ARCH process to the Kesten equation and discussed the extremal
behavior of the process. Engle (1982) already described the �nite number of bounded moments.
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uted random variables, so that the q2t from the approximation (17) has all its moments

�nite. Theorem 1, however, implies that the original q2t from (15) has heavy tails, so

that the higher moments are unbounded. Thus while the �rst order approximation has

in expectation a solution which is identical to the solution (in expectation) of the original

ARCH process, the stochastic properties di¤er regarding the tail area of the distribu-

tions. Nevertheless, both the approximation and the ARCH process pick up the volatility

clustering.

It follows that the equilibrium solution for the return of the market portfolio is a¤ected

by the linear approximation of the ARCH speci�cation for the volatility. The original

ARCH speci�cation predicts fat-tailed returns, an empirical �nding now widely accepted

in the �eld. However, the linearization implies that the market returns would exhibit thin-

tails as in the original CAPM with constant volatility and normally distributed returns.

Even though (17) does pick up the clustering of volatilities, it fails to induce heavy tails.

Connecting the ARCH and SV model

We discuss the properties of the stochastic steady state of the ARCH model in relation with

a stochastic volatility model (SV), as introduced by Harvey et al. (1994). A comparison

of the two models builds on the approximation discussed above. In essence, we show that

the limiting behavior of the SV model and the loglinearized version of the ARCH model

can be identical.

Stochastic volatility models are a popular alternative for the ARCH models. The SV

model has the advantage that it can allow for asymmetric leverage e¤ects. In the SV

model, the volatility process is rewritten as

q2t = s
2
t e
ht ; (19)

where, using the previous notation, ht = log �2t . The di¤erence with the standard ARCH

model is the way in which the variance �2t of qt is driven by its own past and an exogenous

innovation zt:

ht = a+ bht�1 + zt: (20)
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Here zt is assumed to be IID N(u; �). To this point we do not make any assumption on

the distribution of st.

By taking logarithms in (19) we can rewrite the process for the variance (20) as

log q2t � log s2t = a+ b log q2t�1 � b log s2t�1 + zt:

It is then straightforward to show through backward iteration that

log q2t ! log s2t +
a

1� b +
1X
i=0

bizt�i; (21)

where the convergence is in probability.

The standard ARCH process qt = �tst, with variance �2t = v + wq2t�1, was given in

(15). While sofar we have concentrated on the e¤ects of straightforward linearization of

the process given in (15), for a sharper comparison with the stochastic volatility model

we analyze the solution of the log-linearized ARCH model. As before, the non-stochastic

steady state is q2 = v=(1�w) and it is assumed that E[s2t ] = 1. Log-linearization around

the steady state gives

q2 log
q2t
q2
= [v + wq2]s2 log

s2t
s2
+ ws2q2 log

q2t�1
q2
:

Iterating backwards gives

log
q2t
q2
=

1X
i=0

wi log s2t�i: (22)

We show that for certain choices of parameters and innovations the stationary solution

(22) can be made identical to the limit distribution of (21). To this end, suppose that

st = Q
p
xt, where the xt are lognormally distributed with mean 1 and variance e � 1;

and Q is a Bernoulli random variable that equals 1 with probability 1=2 and �1 with

probability 1=2. This implies that log s2t � N(�1=2; 1). Under this assumption we show

that the standard ARCH process implies a limit distribution for q2t that is heavy tailed,

while both the log-linearization of the ARCH process and the SV process yield solutions

that are distributed with an exponential type tail.
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The standard ARCH model yields a martingale for the log stock prices that can be

positive and negative. Moreover one shows that Kesten�s theorem applies as E[(ws2)�] = 1

requires that

w�e��+�
2=2 = 1

has a solution. By taking logs, one sees that this equation has a non-trivial root � =

2 (1� logw) > 0 (recall that w�(0; 1)). The other conditions are easily veri�ed: E
�
log(ws2)

�
=

logw�1=2 < 0; furthermore, E
�
(ws2)� log(ws2)

�
< E[(ws2)�+1] <1 and E[(vs2)�] <1.

Thus by Kesten�s theorem it follows that the stationary solution of this speci�c ARCH

model is heavy tailed.

The log-linearized version of the ARCH model, however, has a stationary solution that

follows a normal distribution

log
q2t
q2
� N(� 1=2

1� w;
1

1� w2 ): (23)

The stochastic volatility model also has the a normal distribution as its stationary solution

log q2t � N(
u+ a

1� b �
1

2
; 1 +

�

1� b2 ):

This implies that7

log
q2t
q2
� N(u+ a

1� b �
1

2
� e

u+a
1�b+

1
2

�

1�b2 ; 1 +
�

1� b2 ): (24)

Compare the expressions for the stationary solution to the SV model in (24) to the sta-

tionary solution of the log-linearized ARCH model (23). There are a su¢ cient degrees of

freedom in the choices of parameters such that the two limit distributions can be made

identical. To conclude, the SV model can be seen as a linearized version of the ARCH

model.

As we argued in the beginning, both the ARCH and SV models capture the time

varying nature of the volatility. Since the intertemporal CAPM predicts that the expected

excess return is linear in the variance of the market portfolio, it then follows that the

7Since q2t is lognormally distributed we have E[q
2
t ] = exp(

u+a
1�b +

1
2

�
1�b2 ).
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unconditional distribution of the returns is thin or heavy tailed depending on whether the

SV (the approximate ARCH), or the original ARCH process is used to model the volatility

process.

4 Discussion

In this paper we have proposed two examples to analyze the failures of the �rst order

stochastic approximation. Our focus has been to contrast the stochastic properties of the

approximate solution with the stochastic properties of the original model. We study two

simple frameworks that allow us to compare the approximation and the original model

without taking recourse to simulations.

The �rst application considers a basic RBC model with full depreciation of capital

and log utility function. Admittedly, these assumptions are stylized. For instance, it is

more common in applied analysis to assume that the capital depreciates at a rate lower

than unity. However, imposing simple conditions is necessary to derive a closed form

solution for the RBC model (cf. Campbell, 1994). The transfer of capital between periods

introduces nonlinearity in the system (1-4), which, in this case, needs to be solved by

taking a log-linearization. The closed form solution gives us a useful benchmark to study

the properties of the approximate solution in a meaningful way.

In our basic RBC model, the nonlinearity has a stochastic dimension. This becomes

clear when looking at the di¤erence equation that characterizes the process for log-income

(8), where both coe¢ cients are stochastic. In essence, the nonlinearity is generated by

two random variables that enter multiplicatively in (8). The �rst order approximation will

transform the equation such that all random variables enter additively. In our example,

the source of nonlinearity stems from the learning by doing speci�cation for technologi-

cal progress. More generally, any RBC model that can be characterized through linear

stochastic di¤erence equations adhere to Kesten�s result.

The second application shares similar features with the RBC model. Namely, the

nonlinearity in the ARCH model has the same multiplicative-stochastic nature. The ap-

proximation works again to separate the two random variables q2t�1 and st in (15). This
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explains why the solution obtained from log-linearization of ARCH has similar stochastic

properties as the solution for the stochastic volatility model. Both the approximated model

and the stochastic volatility model are based on a linear �rst order di¤erence equation with

deterministic coe¢ cients.

5 Conclusions

The solution of a stochastic macro model is usually determined through a linearization

around the associated deterministic steady state. Recently, a signi�cant number of papers

has thoroughly examined the errors that could potentially be made by such an approxima-

tion. This literature, however, is mainly preoccupied with the analysis of the deterministic

part of the approximate solution.

Parallel to this literature, we have studied what are the e¤ects of the linearization on the

stochastic properties of the original model. To this end we have solved the simplest model

in the business cycle literature with �xed labour supply, total depreciation of capital,

a log-utility function and noisy learning by doing. We showed that the solution of the

resulting stochastic di¤erence equation yields a distribution for the log of income over

time which is stationary, exhibits moment failure and has an unbounded upper support.

The approximation, however, has a stationary distribution with bounded support and all

moments �nite. As a second example we considered the CAPM asset pricing equilibrium

model from �nance with stochastic volatility.

To conclude, an approximation of the stochastic part of an equilibrium model needs to

be considered with the same care as an approximation of the deterministic part. Although

often disregarded, the approximation can alter the global data features in equilibrium

dramatically.
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A Appendix

In what follows we prove the result described by Proposition 1: An in�nite weighted sum of

Gamma random variables (rvs), which include the chi-square and exponential distributed

rvs, has a limit distribution with all moments bounded. Let St =
Pt
i=1 �

i�1Qi, where

Qi belongs to a Gamma family with parameters A and B strictly positive. We need to

study the tail behavior of S = lim
t!1

St. We �rst prove that all central moments of S are

�nite, by using the relationship that exists between the cumulants of a distribution and

its moments. Let MSt(x) be the moment generating function (mgf) of St, while lnMSt(x)

is the cumulant generating function (cgf). From the properties of the mgf of a gamma

distribution it follows that

MS(x) = lim
t!1

"
tY
i=1

(1� �i�1Bx)
#�A

: (25)

Lemma 1 The moment generating function MS(x) and the cumulant generating function

lnMS(x) exist and are �nite.

Proof. Indeed, the sequence (ft)t�0, with ft(x) =
Yt

i=1
(1 � �i�1Bx), is decreasing

(that is, for every x, ft(x) > ft+1(x) for any t) and bounded (for every x, ft(x) 2 (0; 1)

for any t)8. Given these two conditions, the monotone convergence theorem implies the

convergence of (ft)t�0 to a �nite limit. Moreover, ft(x) converges pointwise to an f(x) <

1. The moment generating function can be derived easily as MS(x) = f(x)�A. It also

follows that the cumulant generating function is given by lnMS(x) = �A ln f(x).

To determine the cumulant �m, which is the coe¢ cient of xm=m! in the Taylor expan-

sion of the logarithm of the mgf of S, we need the derivative of lnMS(x) = �A lim
t!1

Pt
i=1 ln(1�

�i�1Bx). Pratt�s theorem (1960)? allows us to interchange limits and integrals.

Theorem 2 If:

1. Ft !
t!1

F , Gt !
t!1

G and Ht !
t!1

H pointwise;

8By assumption, we have � 2 (0; 1). In addition, for the moment generating function to exist, x has to
be smaller than 1=B. Moreover, we restrict the domain of MS(x) only to positive numbers. As a result
we have the constraint: 0 < 1� �i�1Bx < 1
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2. Ft � Gt � Ht for all t;

3.
R
Ht !

t!1

R
H and

R
Ft !

t!1

R
F with

R
H and

R
F �nite;

then
R
Gt !

t!1

R
G and

R
G is �nite.

Informally, this criterion states that a convergent sequence permits exchange of limits

and integrals if it is bracketed by two sequences which permit this exchange. From here,

we move forward to showing how to interchange limits and derivatives. This result is

summarized in Lemma 2.

Lemma 2 Let gt(x) = �A ln ft(x), where ft(x) was de�ned above. It is then possible to

interchange limits and derivatives. In other words, the following equation holds for all

m � 1:
@m

�
lim
t!1

gt(x)

�
@xm = lim

t!1
@mgt(x)
@xm .

Proof. We will prove that the �rst derivative of gt(x) with respect to x, satis�es the

conditions of Theorem 2.

Themth derivative of gt(x) with respect to x is given by
@mgt(x)
@xm = ABm (m� 1)!

Pt
i=1

(�i�1)m

(1��i�1Bx)m .

One can easily check that @
mgt(x)
@xm is increasing in t for every x and for every m. Note also

that @mgt(x)
@xm is positive, as 0 < 1 � �i�1Bx < 1. Knowing that �i < 1, it follows that�

�i

1��iBx

�m
<
�

�i

1�Bx

�m
, which gives further

Pt�1
i=0

�
�i

1��iBx

�m
< 1

(1�Bx)m
P1
i=0 (�

m)i.

Thus @
mgt(x)
@xm is bounded from above as well.

0 <
@mgt(x)

@xm
< ABm (m� 1)! 1

(1�Bx)m
1

1� �m

Again, the monotone convergence theorem implies that the sequence @
mgt(x)
@xm is conver-

gent when t goes to in�nity. Furthermore the convergence is pointwise.

Takingm = 1, one can choose Gt =
@gt(x)
@x , Ft = 0, Ht = AB 1

1�Bx
1
1�� , so that Theorem

2 applies, and hence
R @gt(x)

@x dx !
t!1

R
Gdx. As

R @gt(x)
@x dx = gt(x), and since Lemma

1 shows that gt(x) converges and its unique limit is the cumulant generating function

�A ln f(x), it follows that
R
Gdx = �A ln f(x). This implies further that G = @(�A ln f(x))

@x ,

or, in other words,
@

�
lim
t!1

gt(x)

�
@x = lim

t!1
@gt(x)
@x , which is the relationship we wanted to obtain,
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for the case m = 1. Similar arguments are used for m = 2; 3, etc. so we can �nally have

@
n

�
lim
t!1

gt(x)

�
@xm = lim

t!1
@mgt(x)
@xm .

By Lemma 2 it becomes apparent that @m lnMS(x)
@xm = lim

t!1
@mgt(x)
@xm , and thus the mth

cumulant is given by:

�m =
@m lnMS(x)

@xm

����
x=0

= ABm (m� 1)! lim
t!1

tX
i=1

(�i�1)m = ABm (m� 1)! 1

1� �m : (26)

The m-th moment of a distribution is a polynomial in the �1; �2; :::; �m. It follows that

all moments of the limit distribution are bounded. Q.E.D.
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