Markets for Financial Innovation

Ana Babus
Washington University in St. Louis & CEPR

Kinda Hachem
University of Virginia & NBER

March 2022

Abstract

We develop a theory of financial innovation in which both market structure and the payoffs of the claims being traded are determined endogenously. Intermediaries use the cash flows of an underlying asset to design securities for investors. Demand for securities arises as investors choose markets then trade using strategies represented by quantity-price schedules. We show that intermediaries create increasingly riskier asset-backed securities when facing deeper markets in which investors trade more competitively. In turn, investors elicit less risky securities when they choose thinner markets, revealing a novel role for market fragmentation in the creation of safer securities.

JEL Classifications: D47, D86, G23.

Keywords: security design; market structure; market power.
1 Introduction

It has long been acknowledged that non-financial firms adjust product design in response to market structure. In financial markets, persistent empirical regularities to this effect are lacking. This is especially so when it comes to standardized securities whose payoffs are not commissioned by any one investor. Should we expect financial intermediaries to also adjust product design in response to market structure when creating securities to connect investors with markets? If so, what theoretical forces shape the relationship between types of claims and the markets in which they trade?

We build a tractable model in which both security design and market structure are endogenously determined to study these questions. Our environment is one where financial intermediaries use the cash flows of an underlying asset to design securities for investors. A security specifies a payoff for every realization of the underlying asset. As in Ross (1976) and Allen and Gale (1994), we consider that financial innovation arises in response to investors’ demand. However, key to our model is that the demand for securities is itself endogenous. This demand is modeled in two steps. First, investors choose a market in which to trade, which determines the market structure. Second, once markets open and investors can trade, their trading strategies are represented by quantity-price schedules, with each investor understanding the impact of her trade on the price of the security.

Financial intermediaries are strategic when designing securities, taking into account demand by investors in the markets in which the securities will be traded. Markets can be thinner and more fragmented with investors trading more strategically, or deeper and less fragmented with investors trading more competitively. Investors choose markets understanding that their choices will affect the market structure faced by financial intermediaries and thus the design of the securities that will be traded. Investors have mean-variance preferences and are ex-ante homogeneous. However, they have different ex-post valuations of a security, which allows them to benefit from trading with each other. The idiosyncratic valuations of investors are realized after securities have been designed and an intermediary cannot commit to making payoffs contingent on these valuation shocks. The securities that we study are thus standardized.

There are two implicit frictions in the environment that are worth making explicit here. First, investors cannot directly invest in the same assets as financial intermediaries. This is realistic as financial intermediaries frequently create asset-backed securities that give investors exposure to markets that they could not otherwise invest in. Mortgage-backed securities are one such example.\(^2\)

\(^1\)See Johnson and Myatt (2003), Johnson and Myatt (2006), and Bar-Isaac, Caruana, and Cuñat (2012).
\(^2\)Naturally, there are derivative securities, such as equity options, for which the investors can acquire both the
Second, intermediaries design securities bounded by limited liability. That is, a security’s payoff cannot exceed the payoff of the asset that backs it in any given state of the world. In practice, most securities are implicitly designed to respect this constraint. In our set-up, limited liability is equivalent to the spanning constraint in the financial innovation literature (Duffie and Rahi (1995)) which requires that the securities a financial intermediary issues span the payoff of the asset that backs them.

We obtain two major sets of results. The first set of results characterizes the security that an intermediary finds optimal to offer taking as given the market structure. We show that this security depends monotonically on the depth of the intermediary’s market. In particular, we show (i) that the optimal security belongs to the family of debt contracts, paying the lesser of a flat payoff and the full value of the underlying asset in every state of the world, and (ii) that the state in which the security starts paying the flat payoff is higher in markets with more investors. In other words, financial intermediaries design progressively riskier asset-backed securities when facing investors that trade more competitively. In the limit, the security approaches the payoff of the underlying asset in all states, which we refer to simply as selling “equity” to the investor.

The intuition for this first set of results is as follows. When choosing how to design a security, the intermediary’s main incentive is to obtain a high price for it. The equilibrium price at which the security is traded is increasing in its mean payoff and decreasing in the variance of its payoffs across states as investors dislike risk. The intermediary thus faces a trade-off between the mean and the variance of the security he designs, making a debt contract optimal as debt has the least variance among all limited liability securities with the same expected value. Importantly, though, the equilibrium price decreases less with the variance of the security in deeper markets where investors have a lower price impact. Thus, the strength of the mean-variance trade-off faced by the intermediary (and hence where on the spectrum of debt contracts the security lies) depends on the depth of the market. The deeper the market, the less pronounced the trade-off and the more equity-like the intermediary makes his security.

The second set of results focuses on the equilibrium market structure. This is crucial to ensure that the securities intermediaries design in a given market structure can indeed be supported in equilibrium. If no investor benefits from trading in a particular market structure, then we should not expect the corresponding securities to arise in equilibrium.
When choosing which market to trade in, an investor weighs the gains from trade with other investors against the ability to influence the security that the intermediary designs. An investor who trades in a thinner market will have a larger price impact. On one hand, this amplifies the mean-variance trade-off in the intermediary’s security design problem and delivers a less risky security. On the other hand, it also amplifies the extent to which the investor will move the price of the security against herself when trading with other investors.

When investors expect to be relatively homogeneous in their valuations of the same security, they anticipate limited benefits from trading with each other and are therefore willing to accept a larger price impact in order to elicit a less variable security from the intermediary. In contrast, when investors expect to be relatively heterogeneous, they understand that they may want to engage in large trades with each other so they seek to limit their price impact by trading in a large market, albeit with a riskier security.

Overall, then, our model predicts that less variable asset-backed securities are traded in thinner, more fragmented markets while more variable asset-backed securities are traded in deeper, more concentrated markets, controlling for the riskiness of the underlying asset. Studying asymmetric equilibria, we show that the trading of equity in a centralized market can coexist with intermediaries offering debt in fragmented markets. We emphasize that the association between thinner markets and less variable securities uncovered by the model controls for the features of the underlying asset and other structural parameters, such as investor risk aversion and the participation costs of intermediaries. To this point, we show that a more variable security can trade in a less liquid market when there are differences in the underlying asset and the number of available intermediaries. Comparative statics on the underlying asset also reveal that a better underlying asset, as captured by a higher mean for the same variance, can eliminate the creation of asset-backed securities with less variable payoffs by eroding the stability of the fragmented market structures that support the design of such securities.

A planner who chooses across market structures but is constrained to satisfy the equilibrium security design of intermediaries and the trading equilibrium among investors would choose deeper markets, even though the security that emerges in these markets has more variable payoffs. Intermediaries are always better off designing a security for a large market than for a small market. Investors thus benefit at the expense of intermediaries in any equilibrium where debt is traded. In aggregate, however, the benefits to investors in an equilibrium where debt is traded are outweighed by the losses to intermediaries, such that total welfare is higher when markets are deeper. If the
planner could decouple the security design choice from the market structure choice, then he could achieve the highest welfare by designing a debt security for risk averse investors and having them all trade this security in one large market in order to maximize the gains from trade. The problem is that security design cannot be decoupled from market structure in equilibrium. This result is at the heart of our paper. Intermediaries respond to market-based incentives when designing a security for investors to trade. These incentives come from the price of the security, which is endogenously less sensitive to investors’ risk aversion in a large market because the price impact of an individual investor is decreasing in market size.

Related Literature

This paper relates to several strands of literature. The most relevant studies are those on security design and endogenous market structure.

The literature on security design has been very prolific over recent decades. The classic problem explored in these papers is that of a firm needing to raise funds from an investor to finance an investment project. In exchange, the firm proposes a security to the investor. A common result in this literature is that debt is the optimal security in the presence of asymmetric information or moral hazard (e.g., Gale and Hellwig (1985), Gorton and Pennacchi (1990), Nachman and Noe (1994), DeMarzo and Duffie (1999), Biais and Mariotti (2005), Yang (2020), Hébert (2018), Asriyan and Vanasco (2018)).\footnote{In Malenko and Tsoy (2018), a mixture of debt and equity can be optimal when the investor faces Knightian uncertainty about the underlying project’s returns. Other models of endogenous capital structure instead assume transaction costs of security issuance as in Allen and Gale (1988); see, for example, Corbae and Quintin (2019) on the cyclical properties of safe debt.} We explore a variant of the typical set-up. In particular, financial intermediaries issue securities which allow investors to have exposure to assets in which they cannot directly invest. The family of debt contracts is optimal even absent informational asymmetries, and, more importantly, financial intermediaries offer low-variance debt only when investors trade in a thin market. As the market gets deeper, the optimal security becomes equity. Our paper thus isolates investor market power as a force that disciplines the incentives of intermediaries in security design. Isolating this force is important as investor market power can have unique policy implications; see Babus and Hachem (2021) for an application of our model to regulatory debates about centralized trading, specifically the introduction of a centralized exchange to improve market access and increase liquidity.

Parallel to the literature on security design, there is a body of work on financial innovation that
studies the role of security issuances in completing markets. From the seminal paper of Allen and Gale (1991) to the more recent contribution of Carvajal, Rostek, and Weretka (2012), the main focus of this line of research is to analyze whether competition among asset-holders affects their incentives to introduce new securities. Complementarily to this literature, we study a model in which a financial intermediary’s decision to issue securities is affected by the strategic competition between investors when trading the securities they are offered.

There is a young but growing literature on endogenous market structure. Babus and Parlatore (2018), Cespa and Vives (2018), Dugast, Üslü, and Weill (2019), Lee and Wang (2018), and Yoon (2018) provide models that seek to explain why trade takes places in a variety of venues, centralized or decentralized. However, in these papers, the asset traded is taken to be exogenous. We endogenize both the security design and the market participation decision, which allows us to study the relationship between the type of security and the market structure in which it is traded.

A small number of papers study the effect of market structure on security design. In a set-up which assumes that investors are better informed about the prospects of the issuer than the issuer himself, Axelson (2007) shows that debt is optimal if the degree of competition among investors is low. Rostek and Yoon (2018) analyze the role of market structure for introducing non-redundant derivatives. In both of these papers, however, the market structure is taken to be exogenous. In our paper, the market structure is endogenously determined. This is important, as it ensures that the securities traded in a given market structure can indeed be supported in equilibrium.

The rest of the paper proceeds as follows: Section 2 introduces the model environment; Section 3 defines and characterizes the equilibrium; Section 4 connects some predictions of the model to real world markets and discusses aggregate welfare; Section 5 explores some alternative formulations of the model as extensions; and Section 6 concludes. All proofs are collected in Appendix A.

2 The Model Set-Up

Our analysis focuses on how financial firms adjust the design of their securities in response to the demand they face from investors. To capture the interactions between investors and financial intermediaries in a simple setting, we adopt a standard security design framework in which we allow investors to trade the security that intermediaries design. To this, we add a market formation stage to capture how investors’ demand arises. This is a key step to ensure that the securities intermediaries design in response to investors’ demand can indeed be supported in equilibrium.
We consider an economy with three dates, \(t = 0, 1, 2 \), and two types of agents, financial intermediaries and investors.

Intermediaries There are \(M \geq 2 \) risk neutral, impatient financial intermediaries indexed by \(m = 1, \ldots, M \). Each intermediary has access to a risky asset \(Z \) at \(t = 0 \). The asset can be interpreted as loans originated to firms or mortgages extended to households. Each unit of the asset \(Z \) yields a payoff \(z(s) \geq 0 \) if the aggregate state \(s \in [0, S] \) is realized at date \(t = 2 \). The cumulative distribution function for states is \(F(s) \), with \(F(. \) continuous and differentiable, and the probability density function is \(f(s) \). Without loss of generality, we assume \(z'(\cdot) > 0 \).

A market \(m \) is associated with each intermediary \(m \). At \(t = 0 \) in each market \(m \), the intermediary sells claims to the payoff of asset \(Z \) to investors by issuing a security \(W_m \) that pays \(w_m(s) \) in state \(s \) at date \(t = 2 \). The intermediary is the residual claimant on \(Z \). Thus he is effectively designing two securities, one that he offers to investors and one that he keeps for himself, so that the two securities exhaust the payoff of asset \(Z \), as is commonly assumed in the financial innovation spanning literature (Duffie and Rahi (1995)). Formally, this implies that the payoff of the security \(W_m \) is subject to a feasibility constraint of the form

\[
 w_m(s) \leq \alpha_m z(s), \forall s \in [0, S],
\]

where \(\alpha_m \) allows for the possibility that the quantity of the underlying asset \(Z \) available to intermediary \(m \) differs from the quantity of \(W_m \) that he issues to investors. In the simplest case, \(\alpha_m = 1 \) which simplifies (1) to

\[
 w_m(s) \leq z(s), \forall s \in [0, S].
\]

We use feasibility constraint (2) in our main set-up and study the more general case with constraint (1) and \(\alpha_m \) endogenous in Section 5.1. The simplified feasibility constraint in (2) is consistent with an interpretation in which each intermediary issues an asset-backed security based on a representative loan that he previously originated. The more general constraint studied in Section 5.1 is consistent with an interpretation in which each intermediary buys loans from a loan originator in order to issue an asset-backed security.
Investors There are $N \geq 3$ risk averse, patient investors, indexed by $i = 1, \ldots, N$, who have mean-variance preferences. Investors do not have access to the asset Z. However, an investor who wants exposure to Z can choose a market m in which she can acquire some quantity of the security W_m that intermediary m designs.

We model how investors’ demand for securities arises in two steps. First, investors choose markets at date $t = 0$. An investor can choose at most one market, but multiple investors can choose the same market. These choices determine a market structure \mathcal{M}. Second, markets open for trade at $t = 1$ and each security W_m is traded by investors in market m. Investors are subject to idiosyncratic preference shocks between the time they choose markets at $t = 0$ and the time they trade with each other at $t = 1$. These shocks introduce a reason for investors to trade with each other at $t = 1$, as we will see below. Preference shocks are I.I.D. across investors and independent of the realization of the state s.

When an investor i chooses a market m at $t = 0$, we say that $i \in m$. We denote by n_m the number of investors that choose market m. We consider a market m to be active if and only if $n_m > 2$, as in Kyle (1989). In this case, we say that $m \in \mathcal{M}$. A market structure \mathcal{M} is characterized by the number of active markets and by the number of investors in each active market. We define a market structure to be symmetric if each active market m has the same number of investors $n_m = n$.

We model investors’ trading strategies at $t = 1$ as quantity-price schedules, as in Kyle (1989) and Vives (2011). In particular, the strategy of an investor is a map from her information set to the space of demand functions, as follows. The demand function of an investor $i \in m$ with preference shock θ^i is a continuous function $Q_m^i : \mathbb{R} \rightarrow \mathbb{R}$ which maps the price p_m of the security W_m in market m into a quantity q_m^i she wishes to trade

$$Q_m^i (p_m; \theta^i) = q_m^i.$$

An investor i who trades $q_m^i \in \mathbb{R}$ units of security W_m in market m at date $t = 1$ consumes C_m^i at date $t = 2$, where

$$c_m^i (s) = q_m^i w_m (s),$$

4The extensive use of mean-variance preferences in portfolio selection models sparked a debate about the utility theoretic foundations of these preferences. Several solutions have been proposed for a general distribution of shocks. One is to rationalize the mean-variance representation from a second-order Taylor approximation of a generic utility function. Another is to derive mean-variance exactly from a quadratic utility function. The quadratic functional form has been used widely in models with strategic competition, e.g., Vives (2011) and Rostek and Weretka (2012).
for each state s.

Timing To summarize, the timing of events in the model is as follows. At date $t = 0$, each investor chooses a market m in which to trade. The intermediary in market m then designs the security W_m. At date $t = 1$, each investor i learns her preference shock θ^i. All markets then open and investors in each market m trade the security W_m. At date $t = 2$, the state s is realized. Investors receive payoffs according their final holdings of the security. Consumption takes place.

In line with Ross (1976) and Allen and Gale (1994), we have taken the approach that financial innovation is driven by investors’ demand. For this, we have assumed that intermediaries design securities after investors choose markets. At the same time, our focus is on studying the issuance of standardized securities. For this, we have assumed that intermediaries design securities before the preference shocks, θ^i, are realized. Thus, a security cannot be customized to address the specific requirements of any particular investor.

Payoffs and Market Clearing We now formalize the payoffs of investors and intermediaries. Given a market structure \mathcal{M} and a security W_m that intermediary m designs at date $t = 0$, the expected payoff of an investor i in market m at date $t = 1$ as she engages in trade is

$$V^i_m = \theta^i E_1(C^i_m) - \frac{\gamma}{2} V_1(C^i_m) - p_m q^i_m,$$

where the parameter $\gamma > 0$ controls the degree of risk aversion and $V(\cdot)$ is the variance operator. We use $E_1(\cdot)$ and $V_1(\cdot)$ to denote that expectations are being taken over the state s, which is the only unknown at date $t = 1$. The preference shock θ^i is modeled as shifting the intercept of the marginal utility of consumption of investor i, as in Rostek and Weretka (2012). It is conceptually similar to an opposite shift in the investor’s risk aversion parameter but analytically simpler to work with. The shock θ^i is independently distributed across investors according to a distribution $G(\cdot)$ with mean μ_θ and standard deviation σ_θ and is also independent of the realization of the state s.

Substituting Eq. (3) into Eq. (4), we obtain that investor i’s objective function at date $t = 1$, before the uncertainty about the state of the world s has been resolved, is

$$V^i_m = \left[\theta^i E_1(W_m) - p_m \right] q^i_m - \frac{\gamma}{2} V_1(W_m) \left(q^i_m \right)^2,$$
where \(E_1 (W_m) = \int_0^S w_m (s) \, dF (s) \) and \(V_1 (W_m) = \int_0^S [w_m (s) - E_1 (W_m)]^2 \, dF (s) \). In this reformulation, the preference shock \(\theta^i \) captures investor \(i \)'s valuation of the payoff she expects to obtain from one unit of the security \(W_m \). The heterogeneity that \(\theta^i \) introduces across investors can be interpreted as differences in liquidity needs, in the use of securities as collateral, in technologies to repackage and resell cash flows, or in risk-management constraints, for example.

The price \(p_m \) in Eq. (5) is the price at which local market \(m \) clears, given the supply of the security \(W_m \) by intermediary \(m \). To reduce notation, we assume that each intermediary \(m \) supplies one unit per capita of the security \(W_m \) in his market.\(^5\) That is, intermediary \(m \) supplies \(n_m \) units of the security \(W_m \). Then, the market clearing price \(p_m \) is such that

\[
\sum_{i \in m} Q_m^i (p_m; \theta^i) = n_m. \tag{6}
\]

Turn now to the payoffs of intermediaries. An intermediary \(m \) supplies \(n_m \) units of the security \(W_m \) to investors in market \(m \), and for each unit of the security, he receives the price \(p_m \) implied by Eq. (6) at date \(t = 1 \). Aside from supplying \(W_m \) to the market, the intermediary does not take any position in this security. The intermediary is also the residual claimant on the payoff of asset \(Z \), and under constraint (2), he receives \((Z - W_m) \) at date \(t = 2 \) for each unit of \(W_m \) that he supplied.\(^6\)

The trading protocol through which investors in market \(m \) acquire the security \(W_m \) corresponds to a share auction as described by Wilson (1979).\(^7\) Given a market structure \(\mathcal{M} \) and a security \(W_m \) that the intermediary designs in a market \(m \) with \(n_m \) investors at date \(t = 0 \), intermediary \(m \)'s expected payoff at date \(t = 1 \) is

\[
V_m = [p_m + \beta E_1 (Z - W_m)] \times n_m,
\]

\(^5\)If the intermediary could choose both the total supply of \(W_m \) and the state-by-state payoffs of \(W_m \), he would have enough instruments to reshape the demand curve and there would be infinitely many solutions. If the intermediary is instead assumed to supply a fixed amount of \(W_m \) to his market, then we would obtain results that mechanically go in the same direction as those in our main set-up while carrying additional notation.

\(^6\)We give intermediaries access to a sufficiently large pool of the asset \(Z \) so that constraint (2) is satisfied. An alternative would be to fix the quantity of \(Z \) available to intermediary \(m \) at some exogenous value. As we explain in Section 5.1, this alternative would generate mechanical effects that only reinforce our results.

\(^7\)In particular, our set-up is consistent with the interpretation that at date \(t = 1 \) each intermediary \(m \) functions as a central counterparty and places the \(n_m \) units of the security \(W_m \) with investors in his market by running the following auction. Each investor \(i \) in market \(m \) is a bidder that submits a schedule indicating the quantity of the security she demands at each price. The supply of the security is perfectly divisible and, in each market \(m \), the security is allocated at the clearing price, \(p_m \), which is the solution to the market clearing condition (6). Each investor \(i \) receives a share \(q_m^i \) of the security for which she pays \(p_m q_m^i \).
where $\beta \in [0,1]$ is a discount factor that captures the impatience of intermediaries relative to investors.

3 Equilibrium

In this section, we define and characterize the equilibrium. We start by solving for the trading equilibrium in each market m at date $t = 1$, given a market structure \mathcal{M} and the securities W_m that intermediaries design at date $t = 0$. We then characterize the security that each intermediary designs in equilibrium for his market m at date $t = 0$, given a market structure \mathcal{M}. Lastly, we analyze the market formation game which determines the equilibrium market structure \mathcal{M} at $t = 0$.

Definition 1 A subgame perfect equilibrium is a market structure \mathcal{M}, a set of securities $\{W_m\}_{m \in \mathcal{M}}$, and a set of demand functions $\{Q_m^i\}_{i \in m}$ for investors in each active market m such that:

1. Q_m^i solves each investor i’s problem at date $t = 1$

$$\max_{Q_m^i} \left\{ [\theta^i E_1(W_m) - p_m] Q_m^i (p_m; \theta^i) - \frac{\gamma}{2} (Q_m^i (p_m; \theta^i))^2 \nu_1(W_m) \right\},$$

where the price p_m satisfies market clearing, Eq. (6);

2. W_m solves each financial intermediary m’s problem at date $t = 0$

$$\max_{W_m} \{ E_0 (p_m) + \beta [E_1(Z) - E_1(W_m)] \} \times n_m,$$

subject to the feasibility constraint (2);

3. The market structure \mathcal{M} is ℓ-stable at date $t = 0$. That is, for any group $\mathcal{L} = \{i_1, ..., i_\ell\}$ of investors, there is no subset in \mathcal{L} that benefits from deviating and joining a different local market.

Our notion of equilibrium market structure, described in the third bullet of Definition 1, allows for multiple investors, not necessarily all in the same local market, to coordinate and jointly deviate to another local market, m'. For a market structure \mathcal{M} to be ℓ-stable, the expected payoff any investor $i_j \in \mathcal{L}$ receives in her local market m must be at least as large as the expected payoff from deviating to any other market m', that is,

$$E_0 \left(V_{m_i}^{i_j} \right) \geq E_0 \left(V_{m'}^{i_j} \right) \text{ for all } m' \neq m,$$

(9)
including those markets \(m' \notin \mathcal{M} \). Thus, there is no group of up to \(\ell \) investors that can benefit from exiting their local markets and all joining an inactive market \(m' \) (i.e., a market with \(n_{m'} \leq 2 \)) under the market structure \(\mathcal{M} \). Similarly, there is no group of up to \(\ell \) investors that can benefit from exiting their local markets and all joining an active market \(m' \in \mathcal{M} \). Notice that \(\ell = 1 \) corresponds to the case where investors cannot coordinate and can only consider unilateral deviations. The ability of investors to coordinate, as captured by \(\ell > 1 \), can be the result of a financial intermediary poaching investors to join his local market rather than explicit cross-market coordination by investors. Our notion of an \(\ell \)-stable equilibrium market structure is related to the concept of group/strong stability defined in Roth and Sotomayor (1990) and used more recently by Farboodi (2021).

It is important to note that all agents act strategically. This implies that each investor \(i \in m \) takes into account her price impact in market \(m \) when submitting her demand. Similarly, an intermediary understands how the security he designs at date \(t = 0 \) affects the price at which investors trade it at date \(t = 1 \). At the market formation stage, each investor also takes into account how her market choice shapes the security that the intermediaries design, as well as the price at which trade takes place at date \(t = 1 \). To streamline the exposition, we restrict our attention to equilibria in which the market structure is symmetric, intermediaries design the same security, and agents have linear trading strategies.

The rest of this section characterizes the equilibrium. As mentioned earlier, we solve first for the trading equilibrium conditional on a market structure and a set of securities (Section 3.1), then for the equilibrium security conditional on a market structure (Section 3.2), and finally for the equilibrium market structure (Section 3.3).

3.1 The Trading Equilibrium

At date \(t = 1 \), after each investor \(i \) learns her preference shock \(\theta^i \), all active markets open and trade takes place. In each market \(m \), an investor chooses her trading strategy in order to maximize her expected payoff, understanding that she has impact on the price \(p_m \). As is standard in similar models, we simplify the optimization problem (7), which is defined over a function space, to finding the functions \(Q^i_m (p_m; \theta^i) \) pointwise; see Vives (2008) for a comprehensive treatment. For this, we fix a realization of the set of preference shocks, \(\{\theta^i\}_{i=1}^N \). Then, we solve for the optimal quantity \(q^i_m \) that each investor \(i \in m \) demands in market \(m \) when she takes as given the demand functions of the other investors in market \(m \). Thus, we obtain investor \(i \)'s best response quantity \(q^i_m \) in market \(m \) for each realization of the preference shocks of the other investors in market \(m \). This gives us
a map from prices to quantities, or the investor’s optimal demand function point by point. We describe the procedure in detail below.

The first order condition for an investor \(i \) in market \(m \) is

\[
\theta^i E_1(W_m) - p_m - \left(\frac{\partial p_{m,-i}}{\partial q^i_m} + \gamma V_1(W_m) \right) q^i_m = 0, \tag{10}
\]

where \(p_{m,-i} \) is the residual inverse demand of investor \(i \) implied by

\[
q^i_m + \sum_{j \in m, j \neq i} Q^j_m \left(p_m; \theta^i \right) = n_m. \tag{11}
\]

An investor \(i \in m \) chooses to trade a quantity \(q^i_m \) of the security \(W_m \) so that her marginal benefit equalizes her marginal cost of trading. The first term in the first order condition (10) is the marginal benefit of increasing the final holdings of the security \(W_m \) for investor \(i \), which is given by the expected value of the security scaled by the investor’s preference shock \(\theta^i \). The remaining terms in Eq. (10) represent investor \(i \)'s marginal cost of increasing her demand. The second term represents the price that the investor pays to acquire one unit of the security \(W_m \). Investors also incur indirect costs, captured in the last term in Eq. (10). First, since the investors trade strategically, increasing the quantity demanded has an impact on the market clearing price. Note that the price impact implied by Eq. (11) will be non-stochastic, and hence independent of the realization of the preference shocks \(\{ \theta^i \}_{i \in m} \), when the demands of the other investors in market \(m \) are linear. Second, investors are risk averse, which maps into a holding cost of the security that increases proportionally to the variance of \(W_m \) as the quantity demanded increases. Eq. (10) implies that investor \(i \)'s best response demand function is linear when the demands of the other investors in market \(m \) are linear. The following proposition characterizes the trading equilibrium in a market \(m \).

Proposition 1 Given a market structure \(\mathcal{M} \) and a set of securities \(\{ W_m \}_{m \in \mathcal{M}} \), there exists a unique symmetric linear equilibrium that characterizes investors’ trading strategies in each market \(m \), as follows. The equilibrium demand function of an investor \(i \) in market \(m \) is

\[
Q^i_m \left(p_m; \theta^i \right) = \frac{1}{(1 + \lambda_m \gamma V_1(W_m))} \left[\theta^i E_1(W_m) - p_m \right], \tag{12}
\]
where \(\lambda_m^{-1} \equiv (n_m - 2) \) is an index of market depth. The equilibrium price in market \(m \) is

\[
p_m = \left(\frac{1}{n_m} \sum_{i \in m} \theta_i \right) E_1 (W_m) - (1 + \lambda_m) \gamma V_1 (W_m) .
\]

(13)

Proposition 1 shows that investor \(i \) buys or sells the security \(W_m \) depending on whether her valuation \(\theta^i E_1 (W_m) \) of the security’s expected payoff is above or below the price \(p_m \) at which she can trade. However, as can be seen from the denominator of Eq. (12), the investor will restrict the size of her trade for two reasons. First, she is risk averse and the security is risky. Thus, the more risk averse the investor is (as proxied by a higher \(\gamma \)), the less she will trade. Similarly, the more risky the security is (as reflected in a higher variance of payoffs across states), the less of it the investor trades, everything else constant. Second, the investor has a price impact, \(\partial p_m, -i / \partial q_i = \lambda_m \gamma V_1 (W_m) \), that decreases with market depth, \(\lambda_m^{-1} \). In other words, the larger the market is, the more the investor can trade without moving the price against herself.

The equilibrium price in market \(m \), characterized by Eq. (13), is the expected payoff of the security \(W_m \), scaled by the average valuation of the investors in market \(m \), minus a risk premium. The risk premium exists because investors are risk averse and have exposure to a risky security that is in positive fixed supply.

Given a realization of investors’ preference shocks, \(\{ \theta^i \}^N_{i=1} \), it follows from Eq. (13) that the price of the security \(W_m \) is lower in a thinner market. The price of the security also decreases with the variance of the security, everything else constant. However, the price decreases less with the variance of the security as the market becomes deeper.\(^8\) These effects arise because investors are strategic and dislike risk. In a smaller market, changes in the demand of an individual investor have a larger impact on the price of the security. Furthermore, the riskier the security is, the less of it a risk averse investor will demand. If an investor demands less of the security, more will be available to other investors. The price will then have to fall so that, on average, other investors are content with holding more of the security. As the size of the market increases, the price impact of any one investor falls. An increase in riskiness is thus met with a smaller decrease in price compared to a smaller market where a strategic decrease in demand by one investor leads to a bigger price drop.

The effects of market depth and the variance of the security on the price are typical of models in which investors strategically trade risky assets in positive net supply by submitting demand

\(^8\) To verify this, consider the cross-partial derivative of the price \(p_m \) with respect to the variance of the security \(W_m \) and the number of investors in market \(m \), holding everything else constant. This derivative is given by

\[
\frac{\partial}{\partial n_m} \left. \frac{\partial p_m}{\partial V_1 (W_m)} \right|_{E_1 (W_m) = \text{const}} = -\gamma \frac{\partial \lambda_m}{\partial n_m} > 0 .
\]
functions. In contrast to standard models, however, in our model both the variance of the security and the market depth are endogenous. In particular, the security is the choice of the intermediaries, while the market structure, and implicitly the market depth, is the outcome of investors’ choices. Our paper seeks to understand how these forces interact.

3.2 The Equilibrium Security

At the end of date $t = 0$, after the market structure is determined, each active intermediary m designs a security W_m in response to investors’ demand in his market. In particular, an intermediary chooses the payoff $w_m(s)$ of the security for each state s to maximize his expected profit in (8), subject to the feasibility constraint (2). The constraint (2) restricts the intermediary to offer investors a security with a payoff that does not exceed what the intermediary realizes on the asset Z in any state s.

Taking the expectation at date $t = 0$ of the price p_m at which investors in market m trade the security W_m (i.e., the price in Eq. (13)) and substituting it into (8), we obtain that intermediary m designs the security W_m to maximize the following objective function:

$$E_0(V_m) = \left[\beta E_1(Z) + (\mu_\theta - \beta) E_1(W_m) - (1 + \lambda_m) \gamma V_1(W_m) \right] \times n_m. \quad (14)$$

It is transparent that the intermediary benefits from offering a security that pays well in expectation, as the expected price at which investors trade is increasing in $E_1(W_m)$. At the same time, the intermediary increases his expected profit if he offers a security with low variance, as the expected price at which investors trade is decreasing in $V_1(W_m)$. In fact, if he were unconstrained, the intermediary would offer a security with infinite mean and zero variance. However, because the payoff of the security W_m cannot exceed the payoff of the asset Z, the intermediary faces a trade-off between the mean and the variance of the security he designs. Since the weight on the variance in the intermediary’s expected profit in Eq. (14) depends on the depth λ_m^{-1} of the market in which the security is traded, how exactly this trade-off is resolved will depend on the market structure.

Proposition 2 Suppose $\mu_\theta > \beta$ so that intermediaries find it profitable to design securities for

9By the law of iterated expectations, $E_1(W_m) = E_0(W_m)$.

15
investors. In any market \(m \) with \(n_m \) investors, intermediary \(m \) designs a security \(W_m \) with payoffs

\[
w_m(s) = \begin{cases}
 z(s) & \text{if } s < \bar{s}_m \\
 E_1(W_m) + \frac{\mu_0 - \beta}{2\gamma} \frac{n_m - 2}{n_m - 1} & \text{if } s \geq \bar{s}_m
\end{cases}
\]

(15)

where the threshold state \(\bar{s}_m \in [0, S] \) is defined by

\[
\bar{s}_m = \begin{cases}
 z^{-1} \left(E_1(W_m) + \frac{\mu_0 - \beta}{2\gamma} \frac{n_m - 2}{n_m - 1} \right), & \forall n_m < n_S \\
 S, & \forall n_m \geq n_S
\end{cases}
\]

(16)

with \(n_S \) finite if and only if the equation

\[
\frac{n_S - 2}{n_S - 1} = \frac{2\gamma}{\mu_0 - \beta} \left[z(S) - E_1(Z) \right]
\]

(17)

has a solution \(n_S \geq 3 \).

Proposition 2 shows that intermediary \(m \) finds it optimal to design a security that will pay the lesser of a flat payoff and the full value of the asset \(Z \) in every state of the world. The security payoff depends on the market structure, the distribution of the underlying asset \(Z \), and the preferences of investors and intermediaries. We say that the security is debt if it pays the flat payoff in at least some states (i.e., the security is debt if \(\bar{s}_m < S \)). The flat payoff that is paid in states \(s \geq \bar{s}_m \) represents the face value of the security. If the security replicates the payoff of the asset \(Z \) in all states, then the intermediary sells everything to the investors and passes through the payoffs of the underlying asset \(Z \). For convenience, we refer to the security that replicates the payoff of the asset \(Z \) in all states as equity.\(^{10}\) In our model, equity is the limiting case of a debt security where the threshold state above which the security pays a flat payoff is \(\bar{s}_m = S \).

We have the following three cases from Proposition 2. If \(\frac{2\gamma}{\mu_0 - \beta} \left[z(S) - E_1(Z) \right] \leq \frac{1}{2} \), then the intermediary finds it optimal to sell everything and offer equity in any market structure. If \(\frac{2\gamma}{\mu_0 - \beta} \left[z(S) - E_1(Z) \right] \geq 1 \), then the intermediary finds it optimal to design a debt security in any market structure, including in markets with infinitely many investors. These two cases represent corner solutions of the intermediary’s optimization problem. If instead \(\frac{2\gamma}{\mu_0 - \beta} \left[z(S) - E_1(Z) \right] \in \left(\frac{1}{2}, 1 \right) \), then intermediary \(m \) offers a debt security if the number of investors \(n_m \) in market \(m \) is below a threshold \(n_S \), otherwise he offers equity.

\(^{10}\)Typically, in the literature on security design, an equity security has a payoff that yields a fraction of the underlying asset. We extend this definition to accommodate a fraction of 1.
Figure 1 below illustrates the optimal security for different values of n_m in the last case where the solution to the intermediary’s optimization problem can be either debt or equity. The rest of this section expounds the properties depicted in the figure.

The rationale for why debt is the security that the intermediary chooses from the set of all possible security profiles stems from the following property of a debt security: there are no two states s_0 and s_0' such that $w_m(s_0) < z(s_0')$ and $w_m(s_0') < w_m(s_0'')$. In other words, if the feasibility constraint (2) does not bind in either state s_0' or state s_0'', the debt security yields the same payoff in both states, and if constraint (2) binds only in one of the two states, the payoff in that state must be smaller than the payoff on the flat part of the debt contract. Suppose intermediary m chooses a security that does not have this property. Then a deviation which increases the payoff of the security in state s'_0 by $\varepsilon_{s'_0} > 0$ and decreases the payoff of the security in state s''_0 by $\varepsilon_{s''_0} = \frac{f(s'_0)}{f(s''_0)} \varepsilon_{s'_0}$ decreases the variance of the security without changing its mean. Since the intermediary’s expected profit in Eq. (14) is decreasing in the variance of the security, it follows that such a deviation is profitable. Therefore, it cannot be optimal for the intermediary to choose any security other than debt. This argument is similar to the one Hébert (2018) uses to show that debt is the optimal contract in the presence of moral hazard. Novel to our framework, however, is how the equilibrium security depends on the market structure in which it is traded. The following proposition characterizes the relationship between the market structure and the debt contract that the intermediary chooses.
Proposition 3 Suppose that Eq. (17) has a finite solution $n_S \geq 3$. The threshold state \bar{s}_m defined by (16) is increasing in the number of investors n_m in market m as long as $n_m \leq n_S$.

Proposition 3 shows that when the intermediary designs a debt security, he will adjust its payoff depending on the market in which the security is traded. In particular, the lowest state in which a security W_m pays the flat payoff increases with the number of investors in market m, as depicted in Figure 1. In other words, conditional on designing a debt security, the intermediary offers a higher face value in a larger market. At the same time, the larger the market, the more variable the security that the intermediary designs. This property of the equilibrium security extends automatically to the case when Eq. (17) does not have a finite solution and the intermediary offers debt in markets of any size.

To understand Proposition 3, we appeal to the intuition developed at the end of Section 3.1 about the forces that affect the price of a security W_m. To start, consider a state s where the security that intermediary m designs pays $w_m(s) < z(s)$. If the intermediary increases $w_m(s)$ slightly, holding constant the payoffs in all other states, then he increases both the mean and the variance of the security W_m. The increase in the mean of the security works in favor of the intermediary because it increases the price he expects to receive, whereas the increase in the variance of the security decreases the intermediary’s expected profit. However, as we explained in Section 3.1, a higher variance has a greater impact on the expected price in a small market than in a large market. In contrast, as we can see from Eq. (14), the impact of a higher mean on the expected price does not depend on the size of the market. Therefore, the marginal benefit to the intermediary of an increase in $w_m(s)$ is independent of n_m, while the marginal cost is decreasing in n_m. Since a profit-maximizing intermediary sets $w_m(s)$ to equate marginal benefit and marginal cost, it follows that he will increase $w_m(s)$ by more in a large market than in a small market. Given that the intermediary finds it optimal to issue a debt security, he can accomplish this by increasing the threshold state above which the security pays a flat payoff. The next corollary formalizes this discussion and follows immediately from Proposition 3.

Corollary 1 Suppose that Eq. (17) has a finite solution $n_S \geq 3$. The security W_m that the intermediary designs in market m has the following properties:

1. $\frac{\partial E_1(W_m)}{\partial n_m} > 0$ for any $n_m \leq n_S$;

2. $\frac{\partial V_1(W_m)}{\partial n_m} > 0$ for any $n_m \leq n_S$.

18
Two polar securities can be of interest: riskless debt, which is a security that has a flat payoff in all states of the world, and equity, which replicates the payoff of the asset Z in every state. Proposition 2 allows us to understand whether these securities can be offered by intermediaries in equilibrium. The results are collected in the following corollary.

Corollary 2 Fix a market structure \mathcal{M}.

1. In any market $m \in \mathcal{M}$ with $n_m \geq n_S$ investors, where $n_S \in [3, \infty)$ and satisfies Eq. (17), the intermediary offers a security that pays the payoff of the asset Z in every state.

2. There is no market $m \in \mathcal{M}$ in which the intermediary offers a security that pays a flat payoff in all states of the world.

The first part of Corollary 2 is a direct implication of Proposition 2 and the discussion that follows it. Any intermediary with at least n_S investors will find it optimal to sell everything and offer equity. The second part of Corollary 2 says that intermediaries will never offer riskless debt. Suppose to the contrary that there is a market size $n_m \geq 3$ for which an intermediary would find it optimal to offer riskless debt. The variance of riskless debt is zero so, from Eq. (14), it must be the case that the intermediary finds it optimal to offer riskless debt for any market size, including in markets with at least n_S investors. This contradicts the first part of Corollary 2, hence the intermediary never finds it optimal to offer riskless debt.

3.3 The Equilibrium Market Structure

The results so far have characterized the security that an intermediary chooses to design, taking as given the market structure. However, to show that a security can indeed be supported in equilibrium, we need to verify that the market structure in which it trades is also supported in equilibrium. We address this question now.

To understand the incentives of investor i at date $t = 0$ when she chooses a market in which to trade, we need to first evaluate her expected payoff $E_0 (V^i_m)$ from being in market m, given a market structure \mathcal{M}. The expression for $E_0 (V^i_m)$ is obtained by substituting the equilibrium demand function $Q^i_m (p_m; \theta^i)$ from Eq. (12) and the equilibrium price p_m from Eq. (13) into the expression for V^i_m in Eq. (5) then taking expectations at date $t = 0$, before the realization of θ^i is
known. This delivers investor i’s expected payoff as

$$E_0 (V_{m}^i) = \frac{\sigma_{\theta}^2}{2 \gamma} n_m - 1 \left(1 - \frac{1}{(1 + \lambda_m^{-1})^2}\right) \left[\frac{E_1 (W_m)}{\mathcal{V}_1 (W_m)}\right]^2 + \frac{\gamma}{2} \left(1 + \frac{1}{\lambda_m^{-1}}\right) \left(1 - \frac{1}{(1 + \lambda_m^{-1})^2}\right) \mathcal{V}_1 (W_m),$$

which simplifies to

$$E_0 (V_{m}^i) = \frac{\sigma_{\theta}^2}{2 \gamma} n_m - 2 \left[\frac{E_1 (W_m)}{\mathcal{V}_1 (W_m)}\right]^2 + \frac{\gamma}{2} \frac{n_m}{n_m - 2} \mathcal{V}_1 (W_m)$$

after further substituting the index of market depth $\lambda_m^{-1} = n_m - 2$.

The expected payoff at date $t = 0$ of an investor who will trade the security W_m at date $t = 1$ in a market with n_m investors has two components. The first term in Eq. (18) is proportional to the variance of investor preference shocks, σ_{θ}^2, and captures the gains from trade with other investors. The larger σ_{θ}^2 is, the more heterogeneous investors are in how they value the mean payoff of the same security and the more they benefit from trading with each other, as reflected in more heterogenous equilibrium holdings of the security W_m. For smaller σ_{θ}^2, investors are more similar in their valuation of the security and the equilibrium holdings of each investor approaches 1, which is the per capita supply offered by the intermediary in market m. In this case, an investor’s payoff is mainly driven by the risk premium that she commands as compensation for holding a risky security. The second term in Eq. (18) captures the part of the investor’s expected payoff that comes from this compensation for risk.

Lemma 1 Suppose the payoffs of the underlying asset Z satisfy $z(k) - E_{1}(Z|s \leq k) < \sqrt{2} + \varepsilon$ for all $k \in (0, S]$, where $\varepsilon \geq 0$ is a scalar that (weakly) increases with $\frac{\mu_{a - \beta}}{\gamma}$. Then the compensation for risk term $\frac{n_m}{n_m - 2} \mathcal{V}_1 (W_m)$ in the investor’s expected payoff $E_0 (V_{m}^i)$ is decreasing in n_m when W_m is evaluated at the optimal security in Proposition 2.

Both the gains from trade and the compensation for risk depend directly and indirectly on the depth of the market in which the investor trades. For a given security W_m, the gains from trade term in Eq. (18) increases directly with n_m, both because the fundamental gains from trade, as measured by $\frac{n_m - 1}{n_m} \sigma_{\theta}^2$, are increasing in the number of market participants (even though the asset supply scales up linearly with the size of the market) and because the price impact of an investor is smaller in a larger market. In contrast, the compensation for risk term decreases directly with n_m because the investor’s price impact falls with the size of the market. At the same time, the security that intermediary m finds optimal to offer in Proposition 2 changes with n_m, indirectly
affecting both terms in Eq. (18) through W_m. The compensation for risk term is dominated by the direct effect of the market size n_m when the payoffs of the underlying asset Z satisfy the condition in Lemma 1. Intuitively, the condition requires the realizations of Z to be sufficiently variable. We carry this condition through the rest of the analysis.

3.3.1 Symmetric Fragmented Markets

Consider first symmetric market structures. With a discrete number of investors and intermediaries, a symmetric market structure in which each active market contains exactly n investors may not exist for every value of $n \in \mathbb{N}^+$. We therefore extend the definition of a symmetric market structure to allow for a distribution of investors across markets such that there are n investors in some markets and $(n + 1)$ investors in others. Mathematically, a *generalized symmetric* market structure \mathcal{M} is characterized by the number of active markets, $M_1 + M_2 \leq M$ with $M_1 \in \mathbb{N}^+$ and $M_2 \in \mathbb{N}^0$, and by the number of investors in each market, n or $(n + 1)$, where

$$M_1 \times n + M_2 \times (n + 1) = N,$$ \hspace{1cm} (19)

with $n \in [3,N] \cap \mathbb{N}^+$. If all intermediaries are active, i.e., $M_1 + M_2 = M$, then Eq. (19) implies that M_1 intermediaries are each getting $\lfloor \frac{N}{M} \rfloor$ investors and M_2 intermediaries are each getting $\lfloor \frac{N}{M} \rfloor + 1$ investors, where the notation $\lfloor X \rfloor$ means X is rounded down to the nearest integer. Throughout, we assume N and M such that $\lfloor \frac{N}{M} \rfloor \geq 3$.

The following proposition establishes that small σ^2_0 is sufficient for the existence and uniqueness of a symmetric equilibrium where securities are traded in fragmented markets:

Proposition 4 There exists $\bar{\sigma} > 0$ such that, for any $\sigma^2_0 \leq \bar{\sigma}$, the market structure in which all intermediaries are active is the unique ℓ-stable generalized symmetric market structure for any $\ell \geq 3$.

The intuition for Proposition 4 is as follows. When $\sigma^2_0 \leq \bar{\sigma}$, the investor’s expected payoff $E_0 \left(V_i^j \right)$ is driven by the compensation for risk term, $\frac{n_m}{n_m - 2} V_1 \left(W_m \right)$, which by Lemma 1 is decreasing in the size of the investor’s local market. Thus, investors will seek to trade in the smallest possible markets. At least three investors are necessary in a market for there to exist a linear equilibrium with trade when investor preference shocks are independent; see also Wilson (1979) and Kyle (1989). When investors can jointly deviate in groups of three or more ($\ell \geq 3$), they will distribute
themselves across all financial intermediaries. It may appear that fragmented markets can only ever have three investors per market. This need not be the case because the number of available intermediaries is what pins down the size of each market when investors want to trade in the smallest possible markets. In particular, the smallest possible market will have more than three investors if \(M \) is small enough that \(\left\lfloor \frac{N}{M} \right\rfloor > 3 \). While it is beyond the scope of the paper to model intermediary entry, we note here that varying the number of intermediaries will change the size of each market and hence the degree of market fragmentation.

By influencing which market structures can be supported in equilibrium, the variance of investor preference shocks, \(\sigma^2_\theta \), also affects which securities are designed in equilibrium. When \(\sigma^2_\theta \) is small, investors will not differ much in their valuations of the same security. The gains from trade are therefore low and investors anticipate that they will trade little with each other. Given this, they are willing to trade in smaller markets, where they can use their larger price impact to obtain from intermediaries a less variable security, as per Proposition 2. While the larger price impact also hurts the investor when she trades the security with other investors in the same market, this concern is muted because she anticipates trading little with other investors. Thus, debt securities are traded in fragmented markets. The following corollary formalizes these implications:

Corollary 3 In the symmetric equilibrium of Proposition 4, all intermediaries offer a debt security if \(\left\lfloor \frac{N}{M} \right\rfloor + 1 < n_S \). They instead sell everything, i.e., offer equity, if \(\left\lfloor \frac{N}{M} \right\rfloor \geq n_S \).

Corollary 3 shows that as the degree of market fragmentation changes, so does the security that is offered in equilibrium. Recall that when \(\sigma^2_\theta \) is low the degree of market fragmentation is pinned down by the total number of intermediaries since there is a unique market structure that is \(\ell \)-stable for any given number \(M \). Thus, the equilibrium security \(W_m \) need not be the one associated with \(n_m = 3 \) in Proposition 2. As the number of intermediaries decreases, the degree of market fragmentation decreases and the security can change from low-variance debt to high-variance debt or even equity.

The discussion so far has focused on market stability for any \(\ell \geq 3 \). When only unilateral or bilateral deviations of investors are allowed, i.e. \(\ell \in \{1, 2\} \), there can be multiple market structures that are stable for a given number of intermediaries \(M \). Without the ability to coordinate in larger groups, an investor remains isolated if she joins an inactive market \(m \) with \(n_m < 2 \). If an investor were to deviate to such a market she would not trade and therefore receives a payoff of zero. Thus, while the investor’s expected payoff is still decreasing in the size of her local market, she no longer
benefits from exiting her market and joining the market of an inactive intermediary. In this case, the symmetric market structure with M active intermediaries in Proposition 4 is only one of many possible equilibria; any symmetric market structure with fewer than M active intermediaries is also an ℓ-stable market structure when $\ell \in \{1, 2\}$ and $\sigma_0^2 \leq \bar{\sigma}$.

3.3.2 Alternative Market Structures

We now discuss how the set of equilibria expands as we relax some restrictions, namely the focus on σ_0^2 small and the focus on symmetric equilibria.

First, we consider equilibria without restricting attention to small σ_0^2.

Proposition 5 Suppose the distribution function $F(\cdot)$ for the state $s \in [0, S]$ is such that the investor’s expected payoff $E_0(V_m^1)$ evaluated at the optimal security in Proposition 2 has at most one critical point over the range $n \geq \lceil \frac{N}{M} \rceil$, where $\lceil \frac{N}{M} \rceil < n_S \in (3, \infty)$. Then the unique ℓ-stable equilibrium for $\ell = N$ has all investors trading in one market if and only if both σ_0^2 and $\frac{E_1(Z)}{\sqrt{V_1(Z)}}$ are sufficiently large.

An example of a distribution that delivers an investor value function with at most one critical point is $F(s) = \frac{s}{S}$ with S within some bounds, i.e., a (moderately disperse) uniform distribution.\(^{11}\)

Proposition 5 reinforces that the variance of investor preference shocks, σ_0^2, helps determine which market structures – and thus which securities – can be supported in equilibrium. The intuition for σ_0^2 small was discussed in Section 3.3.1. When σ_0^2 is instead large, the gains from trade are also large. Investors understand that they may want to make large trades with each other in order to reap these gains, hence they seek to minimize their price impact by trading in a large market, albeit with a riskier security, provided this security is not too bad, i.e., $\frac{E_1(Z)}{\sqrt{V_1(Z)}}$ sufficiently high. Proposition 5 focuses on $\ell = N$, which allows all investors to coordinate. An alternative interpretation is that any inactive intermediary can seek out investors to form a new market, or any active intermediary can seek out investors to form a larger market. This form of “poaching” by intermediaries achieves the same allocations as cross-market coalitions of investors without requiring that investors themselves coordinate. Either way, $\ell = N$ allows investors to pursue any profitable deviations if they exist. Equity securities are then traded in a centralized market under the conditions in Proposition 5.

\(^{11}\)See the end of the proof of Proposition 5 for a proof of this example.
Next, we consider asymmetric equilibria where markets are differently sized. Asymmetric equilibria that are \(\ell \)-stable under Definition 1 exist for \(\ell = N \) if the investor value function achieves a global maximum at more than one point or if there is a restriction on the total number of intermediaries in the economy.\(^{12}\) Alternatively, one can consider restrictions on only the number of intermediaries that a given investor can interact with, instead of restricting the total number of intermediaries in the economy. In particular, suppose that every investor has pre-existing relationships with a subset of intermediaries formed from interactions outside the model. Intermediaries are heterogeneous in the number of investors they have relationships with, with some intermediaries having more and others having less. As in our main set-up, each investor chooses an intermediary in whose market to trade from the subset of intermediaries that she has a relationship with. The following lemma illustrates how a setting with pre-existing relationships can support asymmetric equilibria, and specifically asymmetric equilibria where debt and equity coexist:

Lemma 2 Consider \(N \) investors each having a relationship with two of three intermediaries, \(\{A, B, C\} \). Denote by \(n_{mm'} \geq 3 \) the number of investors that have relationships with intermediaries \(m \) and \(m' \), for \(m, m' \in \{A, B, C\} \) and \(m \neq m' \), where \(n_{AB} + n_{AC} + n_{BC} = N \). Without loss of generality, suppose \(n_{AB} > n_{AC} > n_{BC} \). Then the \(\ell \)-stable equilibrium for \(\ell = N \) is as follows:

1. For parameters such that all investors want to be in the largest possible markets, the equilibrium market structure has one market of size \(n_{AB} + n_{AC} \) and one market of size \(n_{BC} \). If \(n_{AB} + n_{AC} > n_S > n_{BC} \), then debt is traded in one market and equity is traded in the other.

2. For parameters such that all investors want to be in the smallest possible markets, debt and equity coexist if \(n_{AB} > \max \left\{ \frac{2N}{3}, 2n_S, N - n_S \right\} \) in the case where the investor value function evaluated at the optimal security is monotonically decreasing.

The second part of Lemma 2 focuses on a monotonically decreasing investor value function because that is the case where asymmetric equilibria are more difficult to obtain.\(^{13}\)

\(^{12}\)Consider, for illustration, an \(EV(n) \) that achieves its global maximum uniquely at some market size \(n^* \). An asymmetric equilibrium with \(n_A \in (n^*, N - n^*) \) investors in one market and \(n_B = N - n_A \) investors in another market is possible if the total number of intermediaries is restricted to \(M = 2 \).

\(^{13}\)Consider a value function satisfying \(\arg \max_{n \in [3, N]} E_0 \left(V_{m}^i (n) \right) = \{3\} \) and \(E_0 \left(V_{m}^i (4) \right) = E_0 \left(V_{m}^i (\tilde{n}) \right) \) for some \(\tilde{n} > 4 \). In words, all investors want to be in the smallest possible markets but the investor value function is not monotonically decreasing (it could be U-shaped, for example). With \(N = \tilde{n} + 6 \) investors, an asymmetric equilibrium with one market of size \(\tilde{n} \) and two markets each of size 3 is stable even if all three intermediaries in Lemma 2 have pre-existing relationships with all \(N \) investors. If instead the value function were monotonically decreasing, then only the symmetric equilibrium with three markets each of size \(\frac{N}{3} \) would be stable if all three intermediaries had pre-existing relationships with all \(N \) investors.
Figure 2 below provides an example of a relationship network with $N = 16$, where $n_{AB} = 8$, $n_{AC} = 5$, and $n_{BC} = 3$. Following Lemma 2, the equilibrium market structure will be asymmetric if investors want to trade in the largest possible markets, with one market of size 13 and one market of size 3 prevailing as the only stable market structure, but it will be (roughly) symmetric if investors want to trade in the smallest possible markets, with two markets of size 5 and one market of size 6 prevailing as the only stable market structure. As the total number of investors N increases, many more examples can be constructed. Consider, for example, $N = 65$. If $n_{AB} = 30$, $n_{AC} = 20$, and $n_{BC} = 15$, then the equilibrium is again (roughly) symmetric if investors want to trade in the smallest possible markets. However, if $n_{AB} = 50$, $n_{AC} = 10$, and $n_{BC} = 5$, then the equilibrium is asymmetric even if investors want to trade in the smallest possible markets.\(^{14}\) The discussion of asymmetric equilibria here is not meant to be exhaustive about asymmetric equilibria per se. Rather, it is meant to highlight that our model admits equilibria where some intermediaries issue debt securities and others issue equity even when securities are backed by the same underlying asset Z. In these equilibria, debt is endogenously traded in smaller markets than equity, for the same reasons we discussed in the analysis of symmetric equilibria.

\[^{14}\text{In the first case, the only stable market structure is two markets of size 22 and one market of size 21. In the second case, the only stable market structure is two markets of size 25 and one market of size 15.}\]

3.3.3 The Importance of Endogenous Market Structure

To appreciate the role of endogenous market structure in our results, we return to the investor’s expected payoff and deconstruct it in more detail.
Eq. (5) gives the profit of investor i after her preference shock θ^i is realized but before the state s is known. Evaluated at the equilibrium demand function $Q_i^m(p_m; \theta^i)$ derived in Proposition 1, Eq. (5) simplifies to

$$V^i_m = \frac{1 + 2\lambda_m}{2\gamma (1 + \lambda_m)^2} \frac{\left[\theta^i E_1(W_m) - p_m \right]^2}{\nu_1(W_m)}.$$ (20)

Given a market depth λ_m^{-1} (in essence, a market size n_m) and a security price p_m, Eq. (20) implies that, among all securities with the same mean payoff $E_1(W_m)$, investor i would be better off with the security with the least variance $\nu_1(W_m)$. In other words, investor i would be better off with debt.

Compare this to Eq. (18), which represents investor i’s expected profit when Eq. (5) is evaluated at both the equilibrium demand function $Q_i^m(p_m; \theta^i)$ and the equilibrium price p_m derived in Proposition 1. Given a market depth λ_m^{-1}, Eq. (18) implies that, among all securities with the same mean payoff $E_1(W_m)$, an investor i who takes into account her price impact would only be better off with the security with the least variance $\nu_1(W_m)$ if she expects investors to have very disperse valuations. In other words, investor i would be better off with debt if σ^2_θ is high but equity if σ^2_θ is low.

The endogeneity of market depth and its effect on security design reverses this ordering. A key feature of the equilibrium in our model is that investors take into account not only that they have a price impact when they trade but also that their market choice affects market depth and hence the payoffs of the securities that intermediaries design. Thus, an investor’s expected profit in Eq. (18) depends on the depth of the market both directly and indirectly, with the indirect effect coming through the equilibrium security W_m derived in Proposition 2. The two terms in Eq. (18) – the gains from trade term and the compensation for risk term – can move in opposite directions as the market becomes deeper. This is formalized in the following example:

Lemma 3 Consider an asset Z with payoffs $z(s) = s$, where $s \in [0, S]$ is uniformly distributed according to $F(s) = \frac{s}{S}$. Evaluating Eq. (18) at the equilibrium security derived in Proposition 2, an increase in n_m increases the gains from trade term and decreases the compensation for risk term for all $n_m \geq 3$ if $\frac{\mu_s - \bar{\delta}}{S} > \frac{2}{9}$.

Thus, consistent with Proposition 5 and its discussion, investors will prefer equity if σ^2_θ is high but debt if σ^2_θ is low. This constitutes a reversal in the securities that make investors better off (as a function of the expected dispersion in their valuations) relative to the case where investors only take into account the price impact of their trades for a given market depth.
It is important to notice that investors' preferences shape the payoffs of the security traded in equilibrium both directly and indirectly. First, because the expected price at which a security W_m trades is increasing in the mean μ_{θ} of the investor preference shocks, μ_{θ} directly enters the optimization problem of intermediary m and thus directly affects the payoffs of the security that he finds optimal to design. Second, although the variance of the investor preference shocks does not appear directly in the payoffs of the security derived in Proposition 2, σ_{θ}^2 plays an important role in determining which securities are traded in equilibrium. The payoffs of the equilibrium security in market m depend directly on the number of investors n_m, and σ_{θ}^2 affects an investor's decision about which market to trade in. Thus, as we discussed above, when σ_{θ}^2 is high, investors value trading in deeper markets, which induces the intermediary to offer riskier securities, while, when σ_{θ}^2 is low, investors prefer trading in thinner markets, which induces the intermediary to offer less variable securities.

4 Discussion

In this section, we connect some predictions of our model to phenomena that may be observed in real world markets. The goal is to elucidate a relationship between security design and market structure that can generate empirically relevant patterns rather than to isolate this relationship as the only explanation for these patterns. The ability of the model to generate these patterns does, however, bode well for its empirical relevance and we leave more detailed measurement of that for future work.15 Here, we undertake three illustrative exercises. First, we study the relationship between the type of security and the liquidity of the market in which it is traded (Section 4.1). Second, we explore the specialization of investors in trading one type of security over another (Section 4.2). Third, we look at the role of the underlying asset in determining the market structure in which a security is traded (Section 4.3). All supporting derivations are collected in Appendix B. We conclude the section with a discussion of aggregate welfare, taking into account the expected payoffs of both investors and intermediaries, and highlight a key lesson for policy (Section 4.4).

15 There is a lack of direct empirical work on the joint determination of security design and market structure. However, Biais and Green (2019) provide a thorough documentation of developments in the bond market in the 20th century. They find that when institutions became more important in bond markets, bond markets became thinner. While our model is inherently static (as it develops over three periods), it builds on ingredients that are relevant for investigating these issues. For instance, changes in the dispersion in investors' valuations or in the variance of the underlying asset over time could potentially account for market structure dynamics.
4.1 Liquidity

A natural measure of liquidity in our model is the price impact of an individual investor. Specifically, a market is liquid if the security can be traded with little impact on its price.

Recall from Section 3.1 that the price impact of investor i in market m is $\partial p_{m,-i}/\partial q_{m}^i = \lambda_m \gamma V_1(W_m)$, where $\lambda_m^{-1} \equiv (n_m - 2)$ and, in equilibrium, W_m depends on n_m as demonstrated in Proposition 2. Under the conditions stated in Lemma 1, the total derivative of $\partial p_{m,-i}/\partial q_{m}^i$ with respect to n_m is negative. In other words, a larger market in our model is also a more liquid market. Thus, our model suggests that securities with less variable payoffs, controlling for the riskiness of the underlying asset Z and for investors’ risk aversion, trade in less liquid markets.

Some suggestive evidence in favor of our prediction comes from the work of Friewald, Jankowitsch, and Subrahmanyam (2017). Within the set of mortgage-backed products, they find that mortgage-backed securities (MBS) are much more liquid than collateralized mortgage obligations (CMO). Both products derive their cash flows from underlying pools of mortgage loans, but MBS are characterized as “pass-through” securities, meaning that their payoffs will be as variable as the payoffs of the underlying asset. The authors attribute only part of the liquidity difference between MBS and CMO to differences in government guarantees, suggesting an interesting relationship between market liquidity and payoff structure that is consistent with the predictions of our model.\footnote{The mapping here would be to asymmetric equilibria, wherein multiple security profiles can coexist.}

At this stage it is worth noting that primary and secondary markets are one and the same in our model. We believe this to be a reasonable simplification. While in practice we distinguish between trade in primary and secondary markets, these markets are typically tightly linked. In particular, a more liquid secondary market makes the primary market more liquid as well. It would follow from our model that an individual investor has limited price impact against the intermediary in a liquid primary market. Hence, the intermediary can design a more variable security and investors will accept it (i.e., they will not leave the primary market) because the security can be re-traded in a liquid secondary market after the realization of preference shocks. In this way, liquidity of the secondary market supports liquidity of the primary market.

The degree of liquidity that coexists with a particular payoff profile will naturally depend on structural parameters, for example, risk aversion γ. An increase in γ directly decreases the importance of the gains from trade term relative to the compensation for risk term in the investor’s expected profit, Eq. (18). An increase in γ also affects the payoffs of the security derived in
Proposition 2, which is the security that enters Eq. (18) in equilibrium, decreasing the mean and variance of the equilibrium security for a given market size \(n_m \leq n_S \), along with increasing the threshold market size \(n_S \) at which the intermediary offers equity. The same security will thus trade in larger markets as risk aversion increases. In practical terms, a decrease in investors’ risk appetite increases the liquidity of safer securities, consistent with long-standing practitioner intuition. Whether larger markets are stable (under \(\ell \)-stability with \(\ell = N \)) depends on other parameters, including \(\sigma^2_\theta \), as an increase in \(\gamma \) attenuates both the rate at which the gains from trade term increases with \(n_m \) and the rate at which the compensation for risk term decreases with \(n_m \) once the dependence of the equilibrium security on \(\gamma \) and \(n_m \) is taken into account in the example presented in Lemma 3.

4.2 Market Specialization

Up to this point, we have assumed that each investor chooses only one market in which to trade. We now consider an extension where some investors can choose more than one market. This allows us to explore conditions under which investors may specialize in markets for bonds or markets for equity rather than participating in multiple markets. As in Babus and Hachem (2021), we assume intermediaries have independent underlying assets \(Z \) when allowing for trading in more than one market. None of the results derived so far (i.e., when each investor chooses only one market) hinged on \(s \) being an aggregate state rather than an I.I.D. draw by each intermediary, so the insights discussed here are directly comparable.\(^{17}\)

Consider two groups of investors: X-investors and Y-investors. As in our main set-up, a local market \(m \) is associated with each intermediary \(m \). We add to this environment an additional market \(e \) associated with its own intermediary. X-investors only have access to market \(e \) and, for tractability, there is a mass \(n_X \) of X-investors so that trading in market \(e \) is perfectly competitive. Thus, \(e \) can be interpreted as a centralized market or exchange. Y-investors have the option of trading in the exchange as well as in one local market. In particular, there is a finite number \(N_Y \) of Y-investors, each of whom can choose to (i) participate only in the centralized market, (ii) participate only in a local market, or (iii) participate in both the centralized market and a local

\(^{17}\)The choice of independent \(Z \)'s for the exposition of this extension is done for brevity. Even with the same \(Z \), investors may realistically choose to trade in one market despite having the opportunity to trade in many markets. For example, Boyarchenko, Costello, and Shachar (2018) provide evidence that the majority of financial institutions participate in either the corporate bond market or the CDS market, depending on the relative transaction costs, even though there exist bonds and CDSs issued on the same entities.
The investor’s choice is subject to a per-market participation cost of \(K \geq 0 \).

The optimal security in each market is characterized by Proposition 2, which in the perfectly competitive exchange delivers \(Z \). Furthermore, under Propositions 4 and 5, if the dispersion of preference shocks among Y-investors is not too large, then all local markets are active, and hence the security traded in each local market is debt. The expected payoff of a Y-investor is higher in a local market than in the centralized market at such values of \(\sigma_\theta^2 \). Since both expected payoffs are positive, a Y-investor will choose to participate in both markets if \(K = 0 \). However, there exist participation costs \(K > 0 \) where only the local market is profitable for Y-investors to participate in. At these participation costs, we will observe one group (X-investors) trading equity in a centralized market and another group (Y-investors) trading debt in fragmented markets, even though the Y-investors had the option of trading in both markets. Also notice that debt and equity will coexist here in different markets, separately from the asymmetric equilibria discussed at the end of Section 3.3.2.

4.3 The Underlying Asset

One of the main implications of our model is that, controlling for the riskiness of the underlying asset \(Z \), financial intermediaries design progressively riskier asset-backed securities when facing deeper markets. We now explore how equilibrium in our model depends on the characteristics of the underlying (original) asset, including how changes in the riskiness of this asset affect the relationship between market liquidity and the riskiness of the asset-backed security designed by the intermediary.

The interplay between the underlying asset and the market structure is potentially complex so we fix ideas with two simple exercises. Consider the specification \(z(s) = z(0) + \kappa s \) for the payoffs of the underlying asset \(Z \), where \(s \in [0, 1] \) is uniformly distributed. In the first exercise, we change only the mean of the distribution from which the payoff of the asset \(Z \) is drawn. In the second exercise, we change both the mean and the variance.

To conduct the first exercise, we set \(\kappa = 1 \) for simplicity and increase \(z(0) \), which has the effect of increasing the mean payoff \(E_1(Z) \) of the underlying asset without changing its variance \(\mathcal{V}_1(Z) \). For a given market size \(n_m \), the equilibrium security \(W_m \) has the same shape as before, that is, the mapping from \(n_m \) to \(\bar{s}_m \) does not change. The variance \(\mathcal{V}_1(W_m) \) also does not change, but the mean payoff \(E_1(W_m) \) increases because the payoffs in each state are shifted up by the constant.

\(^{18}\) The analysis in Babus and Hachem (2021) informs us that a trading equilibrium exists in (iii).
The increase in $z(0)$ has no effect on the compensation for risk term in the investor’s expected profit. However, by increasing $E_1(W_m)$ relative to $V_1(W_m)$ for any market size $n_m \in [3, n_S]$, the increase in $z(0)$ amplifies the rate at which the gains from trade term increases with n_m. In the environment of Proposition 5, there are then parameters for which a sufficiently large increase in $z(0)$ moves the model from an equilibrium with fragmented markets where investors trade a security with variance $V_1(W_m) < V_1(Z)$ to an equilibrium with one large market where investors trade a security with variance $V_1(Z)$. The origination of a better underlying asset Z by financial intermediaries, as captured by a higher mean for the same variance, can therefore eliminate the creation of asset-backed securities with less variable payoffs by eroding the stability of the fragmented market structures that support the design of such securities.\footnote{The association between better Z and more variable W_m is consistent with results in Babus and Hachem (2021) but the nature of the experiment is quite different. Here, we vary the quality of the underlying asset and explore the equilibrium market structure and the asset-backed security that it supports. There, we varied the number of investors served by each intermediary following the introduction of a centralized exchange and explored the quality of the underlying asset that an intermediary chooses to originate, understanding the forces at play in the security design problem theorized here. The results in Babus and Hachem (2021) associate some improvements in $E_1(Z)$ with deteriorations in $V_1(Z)$, whereas our focus in this section is only on what happens to $V_1(W_m)$. The interplays between the two experiments would be an interesting avenue for future work.}

For the second exercise, we set $z(0) = 0$ for simplicity and increase κ. Notice that κ affects both the mean and the variance of the underlying asset Z. Specifically, the higher is κ, the higher are both the mean $E_1(Z)$ and variance $V_1(Z)$ of Z.\footnote{Setting $z(0) = 0$ makes the ratio $\frac{E_1(Z)}{\sqrt{V_1(Z)}}$ independent of κ but this is not necessary for the discussion that follows.} For a given market structure, a higher κ in the intermediary’s security design problem will lead to an asset-backed security with a higher variance $V_1(W_m)$. Consider an increase from κ to $\kappa + \Delta$, where $\Delta > 0$, with σ_θ^2 small enough that in both cases the unique symmetric equilibrium in the environment of Proposition 5 has fragmented markets, and specifically fragmented markets where investors trade in the smallest possible markets, i.e., $n \in \{\left\lceil \frac{N}{M} \right\rceil, \left\lfloor \frac{N}{M} \right\rfloor + 1\}$. The increase in κ then does not change the equilibrium market size.

For the same market size, a higher $V_1(W_m)$ under $\kappa + \Delta$ implies a higher price impact $\partial p_m,-i / \partial q_m^i$, which is one indicator of lower liquidity. Thus, an increase in κ can move the model economy from trading a less variable security in a more liquid market to trading a more variable security in a less liquid market. Another indicator of liquidity is the number of investors in each market. By that metric, the liquidity of the market would not change in the example just described. However, suppose there is both an increase from κ to $\kappa + \Delta$ in the underlying asset and an increase from M to $M + X$ intermediaries who design securities backed by this asset, where $X > 1$. Then, with σ_θ^2 small enough, the new asset-backed security will be traded in less liquid markets, as indicated by...
fewer investors per market \(n \in \left\{ \left\lfloor \frac{N}{M+X} \right\rfloor, \left\lfloor \frac{N}{M+X} \right\rfloor + 1 \right\} \), than the old asset-backed security. The variance of the new asset-backed security will also be higher than the variance of the old asset-backed security for \(\Delta \) sufficiently large, indicating once again that a more variable security can trade in a less liquid market when one does not control for differences in the underlying asset or the number of available intermediaries.\(^{21}\) This is consistent with the observation that bonds issued for high-yield firms are less liquid than bonds issued for investment-grade firms.\(^{22}\) It also highlights that the association between smaller markets and less variable securities uncovered by our model controls for the features of the underlying asset and other structural parameters.

4.4 Aggregate Welfare

Our discussion of equilibrium market structure has centered on the investor value function as the choice of markets by investors at \(t = 0 \) is what pins down this structure. We now study aggregate welfare in the model, taking into account the expected payoffs of both investors and intermediaries.

As in Proposition 4, we consider equilibrium market structures with \(M_1 \) intermediaries each getting \(n \) investors and \(M_2 \) intermediaries each getting \((n+1)\) investors, such that Eq. (19) is satisfied. In each active market, an investor obtains an expected profit \(E_0(V^i_m|n_m=n) \) given by Eq. (18), while the intermediary receives an expected profit \(E_0(V_m|n_m=n+1) \) given by Eq. (14). Aggregate welfare can then be defined as

\[
\mathcal{W} = n \times M_1 \times E_0(V^i_m|n_m=n) + (n+1) \times M_2 \times E_0(V^i_m|n_m=n+1) \\
+ M_1 \times E_0(V_m|n_m=n) + M_2 \times E_0(V_m|n_m=n+1) .
\]

The following proposition characterizes the dependence of aggregate welfare on market depth in the example studied in Section 4.3.

Proposition 6 Consider \(z(s) = z(0) + \kappa s \) and \(f(\cdot) \) as in the statement of Lemma 3. Also suppose \(N > n_S \) with \(n_S \in [3, \infty) \). It follows that:

1. An active intermediary’s expected profit \(E_0(V_m) \) in Eq. (14) is increasing in \(n_m \) when \(W_m \) is the equilibrium security derived in Proposition 2.

\(^{21}\)Note that with a higher variance and a smaller market size, the new asset-backed security will again be less liquid than the old asset-backed security when liquidity is measured by the price impact \(\partial p_m \rightarrow 1/\partial q_m \).

\(^{22}\)Formally generating the coexistence of both types of bonds in the model would involve a study of asymmetric equilibria. The end of Section 3.3.2 presents one way in which asymmetric equilibria may be supported, but there are of course others, for example exogenous differences in participation or transaction costs that neutralize any differences in the value of the bonds to investors (as measured by the investor value function we have modeled).
2. If \(z(0) \) is not too large, then for any value of \(\sigma^2_\phi \), the equilibrium in which all investors trade in a single market and the intermediary sells everything (i.e., offers equity) achieves the highest aggregate welfare.

The first part of Proposition 6 says that an intermediary is always better off designing a security for a large market than for a small market. Investors have less price impact in large markets, so the intermediary is able to command a higher price for whatever security he designs. Recall from Propositions 4 and 5 that an investor will be worse off in a large market than in a small market when \(\sigma^2_\phi \) is sufficiently low. Therefore, investors benefit at the expense of intermediaries in any equilibrium where debt is traded.

The second part of Proposition 6 says that the benefits to investors of an equilibrium in which intermediaries offer debt are outweighed by the losses to intermediaries, at least in environments where it is impossible to design a security that has high returns in all states of the world (i.e., environments where \(z(0) \) is low). First, the expected, per-capita profit of an active intermediary increases more quickly with \(n_m \) than the expected profit of an investor may decrease with \(n_m \). Second, the non-linear relationship between market size and the price impact of investors means that total welfare across intermediaries is maximized when there is only one active intermediary.

The results in the second part of Proposition 6 characterize the solution to the problem of a social planner who chooses a market structure, a set of securities, and a set of demand functions to maximize aggregate welfare subject to the equilibrium conditions in the first and second bullets of Definition 1. We can then draw two conclusions from the results on equilibrium market structure in Section 3.3. First, if investors choose market structure as per the third bullet of Definition 1 with \(\ell = 1 \), i.e., only unilateral deviations must be ruled out, there will be a decentralized equilibrium that coincides with the planner’s solution. All investors trading in one market is a stable market structure whenever investors consider only unilateral deviations, hence we can interpret the second part of Proposition 6 as saying that the planner will open a single market if constrained to choose among solutions that arise as a decentralized equilibrium in Definition 1 with \(\ell = 1 \). Second, if investors choose market structure as per the third bullet of Definition 1 with \(\ell = N \), i.e., all unilateral and multilateral deviations must be ruled out, the decentralized equilibrium will only coincide with the planner’s solution when both \(\sigma^2_\phi \) and \(\frac{E_i(Z)}{\sqrt{V_i(Z)}} \) are large enough (Proposition 5).

What would the planner do if not constrained to choose among solutions that arise as a decentralized equilibrium in Definition 1? It is straightforward to show that he would open a single
market in which all investors trade a zero-variance security (i.e., riskless debt).23 Intuitively, a security with zero variance neutralizes the risk aversion of investors. Maximum aggregate welfare can then be achieved by allocating unboundedly positive positions \(q^i_m \) to investors whose realization of \(\theta^i \) exceeds the market average and unboundedly negative positions to the rest to satisfy market clearing: \(\sum_{i \in N} q^i_m = N \). If the planner is restricted to design a positive-variance security, then he will open a single market in which investors take large but finite positions on the closest possible security to riskless debt. Key here is that the planner can achieve higher welfare by decoupling the security design choice from the market structure choice: he would like to design a debt security for risk averse investors and he would like all investors to trade this security in the same market in order to maximize the gains from trade.

The problem is that security design cannot be decoupled from market structure in equilibrium. This result is at the heart of our paper. Intermediaries respond to market-based incentives when designing a security for investors to trade. These incentives come from the price of the security, which is endogenously less sensitive to investors’ risk aversion in a large market because the price impact of an individual investor is decreasing in market size. Policy interventions that overlook the implications of market structure for security design can lead to unintended consequences; see Babus and Hachem (2021) for one application.

5 Robustness

This section considers alternative formulations of our model. We demonstrate that the equilibrium association between market depth and security design uncovered by our model can be supported in all of these formulations.

5.1 Costly Supply

Up to this point, we have assumed that each intermediary \(m \) backs each unit of the security \(W_m \) with exactly one unit of \(Z \). This assumption allowed us to abstract from mechanical effects that would arise from having a fixed supply of \(Z \) and a supply of \(W_m \) that scales with the number of investors in each market. In particular, \(\alpha_m \) in constraint (1) would decrease with \(n_m \). This

23We omit the proof for brevity. It is simply welfare maximization by a planner who: (i) opens \(M_1 \) markets each with \(n \) investors and \(M_2 \) markets each with \(n + 1 \) investors such that Eq. (19) holds; (ii) designs a security \(W_m \) subject only to the feasibility condition (2); (iii) allocates to investor \(i \) in market \(m \) a quantity \(q^i_m \) of the security \(W_m \) after the realization of investor preference shocks, where \(\sum_{i \in m} q^i_m = n_m \) for each market \(m \); and (iv) allocates to the intermediary in each market \(m \) a quantity \(n_m \) of the security \((Z - W_m) \).
reflects that the intermediary has to design more units of the security using a given amount of the underlying asset. Accordingly, the security he can design is mechanically worse in the sense that the maximum payoff to any investor is lower in any state s. All else constant, the price that the intermediary can get for such a security is lower. In response, he will choose a higher \bar{s}_m to boost the expected payoff and get a higher price. Thus, there would be a mechanical association between higher n_m and higher \bar{s}_m, which would reinforce our results but be independent of the price impact that investors have in market m.

We can relax the assumption that each unit of W_m is backed by one unit of Z and allow the intermediary to choose how many units of Z back each unit of W_m, subject to a cost of procuring Z. In particular, intermediary m incurs a cost $c(A_m)$ to acquire A_m units of Z which he then uses to back n_m units of W_m. The cost function satisfies the standard conditions $c(0) = 0$ and $c'(\cdot) > 0$. The intermediary now chooses W_m and A_m subject to the feasibility constraint (1) where $\alpha_m = \frac{A_m}{n_m}$. This constraint replaces (2). The rest of the model is as before.

Appendix C shows that the key insights of Propositions 2 and 3 on security design continue to hold. The equilibrium security W_m is a debt security with threshold state $\bar{s}_m \in [0,S]$. As before, \bar{s}_m is increasing in n_m so that the face value of W_m increases and the security becomes more equity-like as the market size increases. We also show that the key insights on market structure continue to hold. In particular, the compensation for risk term in the investor value function is still decreasing in the size of the market, hence investors will choose to trade in many small markets if heterogeneity in investor preference shocks, σ_i^2, is low. We then know from the security design results that debt will be traded in these markets.

5.2 Timing

Another assumption in our set-up relates to the timing of events. Specifically, we have assumed that at date $t = 0$ financial intermediaries design securities after investors choose markets. An alternative is that at date $t = 0$ investors choose markets after intermediaries design securities. Then, as before, each investor i learns her preference shock θ^i at date $t = 1$, after which all markets open and investors in each market trade the security that the corresponding intermediary has designed.

Under this alternative timing, investors still make their market choice before the realization of preference shocks and hence financial intermediaries issue standardized securities. However, intermediaries can now compete for investors through security design. When designing the security
first, the intermediary commits to a particular payoff profile before investors choose their markets. In other words, the intermediary designs a security whose payoff profile is independent of the number of investors who show up. Nevertheless, the intermediary is rational so the security design problem will take into account the best responses of investors.

We consider two financial intermediaries and study the existence of equilibria in which the market structure is symmetric. As demonstrated in Appendix D, the trading equilibrium is still characterized by Proposition 1. Moreover, we show that a symmetric market structure is supported in equilibrium for σ_0^2 low and the equilibrium security has the same properties as in our main specification. That is, the security that prevails in equilibrium is debt, and the threshold state above which the security delivers a flat payoff is increasing in the number of investors in each intermediary’s market.

Thus, even under the alternative timing considered here, a symmetric equilibrium with two large markets will involve the trading of a more equity-like security than a symmetric equilibrium with two small markets, consistent with the results in our main set-up.

5.3 Multiple Securities

We close by returning to our main set-up and relaxing the assumption that each intermediary m designs only one security W_m for investors. Suppose instead that intermediary m can design two securities, W^0_m and W^1_m, and that both securities can be traded by investors in market m. Denoting by ϕ_m the relative supply of the additional security,

$$w^0_m(s) + \phi_m w^1_m(s) \leq z(s), \quad \forall s \in [0, S]$$

replaces (2) as the feasibility constraint on the intermediary’s security design problem in the main model. The rest of the model is as before.

Appendix E shows that Proposition 2 now characterizes the aggregate security, $W_m = W^0_m + \phi_m W^1_m$, designed by an intermediary in a market with n_m investors. There is a continuum of solutions for the component securities W^0_m and W^1_m, with each solution aggregating to the payoff profile in Proposition 2. That the component securities are not uniquely pinned down implies that what matters is the portfolio of securities investors can trade in market m. Thus, W_m in Proposition 2 can be interpreted as a fund rather than an individual security. The market structure results would then follow as in the main model when investors trade the fund.
6 Conclusion

This paper has developed a tractable model of financial innovation to address a critical question: what is the relationship between the types of securities offered and the market structures in which they trade? A central finding of our paper is that financial intermediaries design progressively riskier securities when facing deeper, less fragmented markets in which investors trade more competitively. Market fragmentation thus plays an important role in the creation of safer securities.

The methodological novelty in our paper is that both security design and market structure are endogenously determined. This is important, as it ensures the securities created for a given market structure are indeed supported in equilibrium. Financial intermediaries design asset-backed securities taking into account investors’ demand in the markets in which the securities will be traded. Investors choose markets understanding that their choices will affect market depth and thus the design of the securities that will be available for trade.

When choosing how to design a security, an intermediary’s main incentive is to obtain a high price for it. As usual, the equilibrium price at which the security is traded is increasing in its mean payoff and decreasing in the variance of its payoffs across states. The intermediary thus faces a trade-off between the mean and the variance of the security he designs, making a debt contract the optimal one. Importantly, we show that the equilibrium price decreases less with the variance of the security in deeper markets where investors have a lower price impact. Thus, the strength of the mean-variance trade-off faced by the intermediary depends on the depth of the market. The deeper the market, the less pronounced the trade-off and the higher the face value of the debt contract offered.

When choosing a market in which to trade, an investor weighs the gains from trade with other investors against the ability to influence the security that the financial intermediary designs. An investor who trades in a thinner, more fragmented market will have a larger price impact. On one hand, this amplifies the mean-variance trade-off in the intermediary’s security design problem and delivers a less risky security. On the other hand, it also amplifies the extent to which the investor will move the price of the security against herself when trading with other investors.

In Dugast, Üslü, and Weill (2019), investors’ types play a key role in determining the market structure in which trade occurs. In our model, investors’ preferences affect the security that will be traded, both directly through the payoffs that an intermediary offers for a given market structure and indirectly through the market structure that prevails as an equilibrium. When investors expect
to be relatively heterogeneous in their valuations of the same security, they understand that they may want to engage in large trades with each other so they seek to limit their price impact by trading in a large market, albeit with a riskier security. In contrast, when investors expect to be relatively homogeneous in their valuations, they anticipate trading little with each other and are thus willing to accept a larger price impact in thinner, more fragmented markets in order to elicit less variable securities from financial intermediaries.

A key prediction of our model is that, controlling for the riskiness of the underlying asset, less variable asset-backed securities are traded in thinner, more fragmented markets while more variable asset-backed securities are traded in deeper, more concentrated markets. We emphasize that the association between thinner markets and less variable securities uncovered by our model controls for the features of the underlying asset and other structural parameters, such as investor risk aversion and the participation costs of intermediaries. Having developed a parsimonious framework at the intersection of market structure and security design, our model provides a platform on which many extensions can be considered and offers fruitful avenues for future work.
References

Online Appendices

Appendix A – Proofs

Proof of Proposition 1

Rearrange the first order condition of investor i in Eq. (10) to isolate:

$$q_i^m = \frac{\theta_i^i E_1(W_m) - p_m}{\frac{\partial p_m}{\partial q_{im}} + \gamma V_1(W_m)} \quad (A.1)$$

for any $i \in m$. Use this expression to substitute out $Q^j_m(\cdot)$ from Eq. (11) for all investors $j \neq i$ in market m:

$$q_i^m + \sum_{j \in m, j \neq i} \frac{\theta_j^j E_1(W_m) - p_m}{\frac{\partial p_m}{\partial q_{jm}} + \gamma V_1(W_m)} = n_m \quad (A.2)$$

We focus on symmetric linear equilibria in which the price impact $\frac{\partial p_m}{\partial q_{im}}$ does not vary across investors within the same market. This permits rearranging Eq. (A.2) to isolate:

$$p_m = \frac{\sum_{j \in m, j \neq i} \theta_j^j}{n_m - 1} E_1(W_m) - \frac{n_m - q_i^m}{n_m - 1} \left(\frac{\partial p_m}{\partial q_{im}} + \gamma V_1(W_m)\right)$$

which then implies:

$$\frac{\partial p_m}{\partial q_{im}} = \frac{1}{n_m - 1} \left(\frac{\partial p_m}{\partial q_{im}} + \gamma V_1(W_m)\right)$$

Invoking symmetry ($\frac{\partial p_m}{\partial q_{im}} = \frac{\partial p_m}{\partial q_{jm}}$), we obtain:

$$\frac{\partial p_m}{\partial q_{im}} = \lambda_m \gamma V_1(W_m) \quad (A.3)$$

where $\lambda_m \equiv \frac{1}{n_m - 1}$. Substituting Eq. (A.3) into Eq. (A.1) delivers the equilibrium demand function $Q_i^m(p_m; \theta^i)$ in Eq. (12). Substituting Eq. (12) into the market clearing condition $\sum_{i \in m} Q_i^m(p_m; \theta^i) = n_m$ then delivers the equilibrium price p_m in Eq. (13). \hfill \blacksquare

Proof of Proposition 2

Intermediary m designs a security W_m to maximize his expected payoff in Eq. (8), subject to the state-by-state feasibility constraint (2).
Letting \(v(s) \geq 0 \) denote the Lagrange multiplier on the feasibility constraint for state \(s \), we can write the Lagrangian for intermediary \(m \)'s optimization problem as:

\[
\mathcal{L}_m = E_0(V_m) + \int_0^S v(s)[z(s) - w_m(s)] dF(s)
\]

or, equivalently:

\[
\mathcal{L}_m = \beta E_1(Z) n_m + (\mu_\theta - \beta) n_m \int_0^S w_m(s) dF(s)
\]

\[-\gamma \frac{n_m(n_m-1)}{n_m-2} \left[\int_0^S (w_m(s))^2 dF(s) - \left(\int_0^S w_m(s) dF(s) \right)^2 \right]
\]

\[+ \int_0^S v(s)[z(s) - w_m(s)] dF(s)\]

where the intermediary is choosing \(w_m(s) \) for each state \(s \in [0,S] \) taking as given the market size \(n_m \). We restrict attention to \(n_m \geq 3 \) so that the trading equilibrium in Proposition 1 involves a well-defined equilibrium price for market \(m \).

The first order condition with respect to \(w_m(s) \) delivers:

\[
v(s) = E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma} - w_m(s)
\]

where \(v(s) \geq 0 \) and \(w_m(s) \leq z(s) \) hold with complementary slackness.

If \(v(s) > 0 \), then:

\[w_m(s) = z(s)\]

and, invoking (A.4), we need:

\[z(s) < E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma} - \frac{n_m}{n_m-1}\]

to confirm \(v(s) > 0 \).

If \(v(s) = 0 \), then (A.4) pins down:

\[w_m(s) = E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma} - \frac{n_m}{n_m-1}\]

and we need:

\[z(s) \geq E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma} - \frac{n_m}{n_m-1}\]
to confirm \(w_m(s) \leq z(s) \).

The payoffs of the equilibrium security are therefore:

\[
\begin{align*}
w_m(s) &= \begin{cases}
 z(s) & \text{if } z(s) < E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma} \\
 E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma} & \text{if } z(s) \geq E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma}
\end{cases}
\end{align*}
\]

Suppose there exists an \(\bar{s}_m \in (0, S) \) solving:

\[
z(\bar{s}_m) = E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma}
\]

Then \(z'(\cdot) > 0 \) implies:

\[
E_1(W_m) = \int_0^{\bar{s}_m} z(s) \, dF(s) + \int_{\bar{s}_m}^{S} z(s) \, dF(s)
\]

and we can rewrite Eq. (A.5) as:

\[
\int_0^{\bar{s}_m} [z(\bar{s}_m) - z(s)] \, dF(s) = \frac{\mu_\theta - \beta n_m - 2}{2\gamma}
\]

The left-hand side of Eq. (A.7) is increasing in \(\bar{s}_m \) so there will be a unique solution \(\bar{s}_m \in (0, S) \) if and only if:

\[
z(S) - E_1(Z) > \frac{\mu_\theta - \beta n_m - 2}{2\gamma}
\]

The ratio \(\frac{n_m - 2}{n_m - 1} \) is increasing in \(n_m \) and asymptotes to 1 as \(n_m \to \infty \).

If the parameters satisfy \(z(S) - E_1(Z) \in \left[\frac{\mu_\theta - \beta}{4\gamma}, \frac{\mu_\theta - \beta}{2\gamma} \right] \), then Eq. (17) has a unique solution \(n_S \in [3, \infty) \). For any \(n_m \in [3, n_S) \), condition (A.8) holds and the equilibrium security is given by Eq. (15) with \(s_m \) as defined in Eq. (A.5). For any \(n_m \in [n_S, \infty) \), condition (A.8) does not hold, meaning that there is no \(s_m \in (0, S) \) solving Eq. (A.5). The equilibrium security is still given by Eq. (15) but with \(s_m = S \) instead of Eq. (A.5).

If the parameters satisfy \(z(S) - E_1(Z) \geq \frac{\mu_\theta - \beta}{2\gamma} \), then condition (A.8) is true for any \(n_m \in [3, \infty) \). The equilibrium security is thus given by Eq. (15) with \(s_m \) as defined in Eq. (A.5). Condition (A.8) being true for any \(n_m \in [3, \infty) \) means that there is no solution \(n_S \in [3, \infty) \) to Eq. (17). Assigning \(n_S = \infty \) here recovers Eq. (A.5) from Eq. (16) for any \(n_m \geq 3 \).

If the parameters satisfy \(z(S) - E_1(Z) < \frac{\mu_\theta - \beta}{4\gamma} \), then condition (A.8) is false for any \(n_m \in [3, \infty) \). The equilibrium security is thus given by Eq. (15) with \(s_m = S \) for all \(n_m \in [3, \infty) \). Assigning
\(n_s = -\infty \) here recovers \(\bar{s}_m = S \) from Eq. (16) for any \(n_m \geq 3 \).

We have now shown that the solution to the intermediary’s F.O.C.s belongs to the family of debt securities: \(W_m \) pays the entirety of the underlying asset \(Z \) up to some threshold state \(\bar{s}_m \), after which it pays a flat amount that does not vary with the state. A perturbation argument similar to Hébert (2018) can be used to confirm the optimality of debt securities in our environment. We sketch this argument in the main text (see the paragraph that follows Figure 1) so do not reproduce it here. Instead, we confirm that \(\bar{s}_m \) as defined by Eq. (A.7) satisfies the S.O.C. for a maximum in an auxiliary problem where the intermediary chooses a threshold state \(e_{\bar{s}_m} \) to maximize his expected profit within the family of debt securities.

The objective function for this auxiliary problem is:

\[
\mathcal{L}_m^{(A)} = (\mu_\theta - \beta) \left[z(\bar{s}_m) - \int_0^{\bar{s}_m} [z(\bar{s}_m) - z(s)] \, dF(s) \right] - \gamma n_m - 1 n_m - 2 \int_0^{\bar{s}_m} [z(\bar{s}_m) - z(s)] ^2 \, dF(s) - \left(\int_0^{\bar{s}_m} [z(\bar{s}_m) - z(s)] \, dF(s) \right)^2
\]

The first derivative with respect to \(\bar{s}_m \) is:

\[
\frac{\partial \mathcal{L}_m^{(A)}}{\partial \bar{s}_m} = \left[\mu_\theta - \beta - 2 \gamma \frac{n_m - 1}{n_m - 2} \int_0^{\bar{s}_m} [z(\bar{s}_m) - z(s)] \, dF(s) \right] [1 - F(\bar{s}_m)] \bar{z}'(\bar{s}_m)
\]

If \(n_m < n_s \), then Eq. (A.7) has a unique interior solution \(\bar{s}_m \in (0, S) \), which is also the unique interior solution to \(\frac{\partial \mathcal{L}_m^{(A)}}{\partial \bar{s}_m} = 0 \). The second derivative evaluated at this solution is:

\[
\frac{\partial^2 \mathcal{L}_m^{(A)}}{\partial \bar{s}_m^2} \bigg|_{\bar{s}_m = \bar{s}_m} = -2 \gamma \frac{n_m - 1}{n_m - 2} (\bar{z}'(\bar{s}_m))^2 F(\bar{s}_m) [1 - F(\bar{s}_m)] < 0
\]

where the inequality follows from \(\bar{s}_m \in (0, S) \). Eq. (A.7) thus defines a local maximum and, since there are no local minima, the local maximum is also the global maximum.

If \(n_m > n_s \), then there is no solution \(\bar{s}_m < S \) to Eq. (A.7). The only solution to \(\frac{\partial \mathcal{L}_m^{(A)}}{\partial \bar{s}_m} = 0 \) is therefore \(\bar{s}_m = S \), in which case the second derivative is:

\[
\frac{\partial^2 \mathcal{L}_m^{(A)}}{\partial \bar{s}_m^2} \bigg|_{\bar{s}_m = S} = - \left[\mu_\theta - \beta - 2 \gamma \frac{n_m - 1}{n_m - 2} [z(S) - E_1(Z)] \right] f(S) \bar{z}'(S)
\]

This is negative if and only if \(\frac{n_m - 2}{n_m - 1} > \frac{\gamma}{\mu_\theta - \beta} [z(S) - E_1(Z)] \) or, equivalently, \(n_m > n_s \).
Notice that Eq. (A.7) is only defined if $\mu_\theta > \beta$. We now demonstrate that $\mu_\theta > \beta$ is necessary and sufficient for the intermediary’s participation constraint to be satisfied. The participation constraint requires that the intermediary’s maximized expected profit, as given by $E_0(V_m)$ in Eq. (8) when evaluated at the equilibrium security, must be at least as large as $\beta E_1(Z) \times n_m$, which is what the intermediary could get by consuming n_m units of Z at date $t = 2$ instead of using these units to design the security for market m.

If $n_m \geq n_S$, then the intermediary’s maximization problem yields $W_m = Z$ and the participation constraint simplifies to:

$$(\mu_\theta - \beta) E_1(Z) \geq \gamma \frac{n_m - 1}{n_m - 2} \mathcal{V}_1(Z)$$

(A.9)

Assume $\mu_\theta > \beta$ so that the left-hand side of (A.9) is positive. The right hand side of (A.9) is decreasing in n_m so (A.9) will hold for all $n_m \geq n_S$ if it holds for $n_m = n_S$. Evaluating (A.9) at the definition of n_S in Eq. (17), we get:

$$2z(S)E_1(Z) \geq E(Z^2) + (E_1(Z))^2$$

which is true because Z has the property $z'(\cdot) > 0$.

If $n_m < n_S$, then $\bar{s}_m \in (0, S)$ is defined by Eq. (A.7). The participation constraint requires:

$$(\mu_\theta - \beta) E_1(W_m) \geq \gamma \frac{n_m - 1}{n_m - 2} \mathcal{V}_1(W_m)$$

(A.10)

where $E_1(W_m)$ is given by Eq. (A.6) and:

$$\mathcal{V}_1(W_m) = \int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)]^2 dF(s) - \left(\int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s) \right)^2$$

(A.11)

Use Eq. (A.7) to rewrite (A.10) as:

$$2E_1(W_m) \int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s) \geq \mathcal{V}_1(W_m)$$

then substitute in for $E_1(W_m)$ and $\mathcal{V}_1(W_m)$ to get:

$$2z(\bar{s}_m) \frac{1}{F(\bar{s}_m)} \int_{0}^{\bar{s}_m} z(s) dF(s) + \left(\frac{1}{F(\bar{s}_m)} - 1 \right) \left[(z(\bar{s}_m))^2 - \frac{1}{F(\bar{s}_m)} \int_{0}^{\bar{s}_m} (z(s))^2 dF(s) \right]$$

$$\geq \frac{1}{F(\bar{s}_m)} \int_{0}^{\bar{s}_m} (z(s))^2 dF(s) + \left(\frac{1}{F(\bar{s}_m)} \int_{0}^{\bar{s}_m} z(s) dF(s) \right)^2$$
which is again true because of $z' (\cdot) > 0$. ■

Proof of Proposition 3

For any $n_m < n_S$, Eq. (16) simplifies to Eq. (A.7) from the proof of Proposition 2. Differentiating Eq. (A.7) yields:

$$\frac{d\bar{s}_m}{dn_m} = \frac{\mu_0 - \beta}{2\gamma} \frac{1}{(n_m - 1)^2} z'(\bar{s}_m) F(\bar{s}_m) > 0$$

Therefore, $\frac{d\bar{s}_m}{dn_m} > 0$ for any $n_m \in [3, n_S]$ and $\lim_{n_m \to n_S^-} \frac{d\bar{s}_m}{dn_m} > 0$.

A corollary is that the same properties hold for the mean and variance of the equilibrium security. To see why, differentiate Eq. (A.6) and (A.11) to get:

$$\frac{dE_1 (W_m)}{d\bar{s}_m} = z' (\bar{s}_m) [1 - F(\bar{s}_m)]$$

and:

$$\frac{d\mathcal{V}_1 (W_m)}{d\bar{s}_m} = 2z' (\bar{s}_m) [1 - F(\bar{s}_m)] \int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s)$$

Both of these derivatives are strictly positive because $n_m < n_S$ implies $\bar{s}_m \in (0, S)$. It then follows immediately that $E_1 (W_m)$ and $\mathcal{V}_1 (W_m)$ increase with n_m as \bar{s}_m increases with n_m, up until the point where $n_m = n_S$. ■

Proof of Lemma 1

Write $\frac{n \mathcal{V}_1 (W(n))}{n - 2}$ to make explicit that we are evaluating $\mathcal{V}_1 (\cdot)$ at the equilibrium security derived in Proposition 2, denoted here by $W(n)$ to make explicit its dependence on the market size n.

Taking derivatives:

$$\frac{d}{dn} \left(\frac{n \mathcal{V}_1 (W(n))}{n - 2} \right) = -\frac{2 \mathcal{V}_1 (W(n))}{(n - 2)^2} + \frac{n \frac{d\mathcal{V}_1 (W(n))}{dn}}{n - 2}$$

If $n \geq n_S$, then $W(n) = Z$ and this derivative is negative. If instead $n < n_S$, then we can use the derivatives in the proof of Proposition 3 to write:

$$\frac{d}{dn} \left(\frac{n \mathcal{V}_1 (W(n))}{n - 2} \right) \equiv -\mathcal{V}_1 (W(n)) - \frac{\mu_0 - \beta n(n - 2)}{2\gamma (n - 1)^2} F(\bar{s}) \int_{0}^{\bar{s}} [z(\bar{s}) - z(s)] dF(s)$$

Using Eq. (A.7) and the expression for $\mathcal{V}_1 (W(n))$ in Eq. (A.11), we obtain the following necessary
and sufficient condition for \(\frac{d}{dn} \left(\frac{nV_1(W(n))}{n-2} \right) < 0 \) when \(n < n_S \):

\[
\int_0^\infty [z(\bar{s}) - z(s)]^2 dF(s) > \frac{1}{F(\bar{s})} \left(1 + \frac{1 - F(\bar{s})}{n-1} \right) \left(\int_0^\infty [z(\bar{s}) - z(s)] dF(s) \right)^2
\]

This rearranges to:

\[
\frac{z(\bar{s}) - E_1(Z|s \leq \bar{s})}{\sqrt{V_1(Z|s \leq \bar{s})}} < \sqrt{\frac{n-1}{1 - F(\bar{s})}} \tag{A.12}
\]

where:

\[
E_1(Z|s \leq \bar{s}) = \frac{1}{F(\bar{s})} \int_0^\infty z(s) dF(s)
\]

and:

\[
V_1(Z|s \leq \bar{s}) = \frac{1}{F(\bar{s})} \int_0^\infty (z(s))^2 dF(s) - \left(\frac{1}{F(\bar{s})} \int_0^\infty z(s) dF(s) \right)^2
\]

Since \(n \geq 3 \) and \(F(\bar{s}) \in [0,1] \), a sufficient condition for (A.12) is:

\[
\frac{z(\bar{s}) - E_1(Z|s \leq \bar{s})}{\sqrt{V_1(Z|s \leq \bar{s})}} < \sqrt{2} + \varepsilon(\bar{s})
\]

where \(\varepsilon(\bar{s}) \equiv \sqrt{2} \left(\frac{1}{\sqrt{1-F(\bar{s})}} - 1 \right) \geq 0 \) and \(\varepsilon'(\bar{s}) > 0 \). From Eq. (A.7), we know that \(\bar{s} \) is (weakly) increasing in \(\frac{\mu_\alpha - \beta}{\gamma} \). The same is then true for \(\varepsilon(\bar{s}) \) and we can define the (sufficient) condition in the statement of Lemma 1 independently of a particular value of \(\bar{s} \).

Proof of Proposition 4

It will suffice to show that the investor’s value function is decreasing in the number of investors in her market for \(\sigma^2_\varepsilon \) low.

From Eq. (18), the expected profit of an investor in a market of size \(n \) is:

\[
E_0(V^i(n)) = \frac{\sigma^2_\varepsilon n - 2 \left[E_1(W(n)) \right]^2}{2\gamma n - 1} - \frac{\gamma n}{2n - 2} V_1(W(n)) \tag{A.13}
\]

where we write \(E_0(V^i(n)) \) to make explicit that we are evaluating the investor’s expected profit at the equilibrium security derived in Proposition 2, denoted here by \(W(n) \) to make explicit its dependence on the market size \(n \).

Note that \(E_0(V^i(n)) \) is continuous and differentiable in \(n \in R_+ \). Taking the derivative with
respect to \(n \) in Eq. (A.13), we obtain

\[
\frac{d}{dn} E_0 (V^i (n)) = \frac{\sigma_d^2}{2\gamma} X (n) + \frac{\gamma}{2} \frac{d}{dn} \left(\frac{nV_1 (W (n))}{n-2} \right),
\]

where

\[
X (n) \equiv \frac{1}{(n-1)^2} \frac{[E_1 (W (n))]^2}{V_1 (W (n))} + \frac{n-2}{n-1} \frac{1}{dn} \left(\frac{[E_1 (W (n))]^2}{V_1 (W (n))} \right)
\]

and

\[
\frac{d}{dn} \left(\frac{[E_1 (W (n))]^2}{V_1 (W (n))} \right) = E_1 (W (n)) \left[\frac{2}{dn} \frac{dE_1 (W (n))}{dn} - \frac{E_1 (W (n))}{V_1 (W (n))} \frac{dV_1 (W (n))}{dn} \right]
\]

If \(\frac{d}{dn} E_0 (V^i (n)) < 0 \), then investors want to be in the smallest possible markets, and as long as they can deviate in groups of three or more, i.e., \(\ell \geq 3 \) in Definition 1, all intermediaries will be active.

From Lemma 1, \(\frac{d}{dn} \left(\frac{nV_1 (W (n))}{n-2} \right) < 0 \) when the payoffs of the asset \(Z \) satisfy the condition in the lemma. The next step is to show that \(X (n) \) is bounded. If \(n \geq n_S \), then \(W (n) = Z \) and

\[
\frac{d}{dn} \left(\frac{[E_1 (W (n))]^2}{V_1 (W (n))} \right) = 0.
\]

If instead \(n < n_S \), then we can use the derivatives in the proof of Proposition 3 to write

\[
\frac{d}{dn} \left(\frac{[E_1 (W (n))]^2}{V_1 (W (n))} \right) \equiv 1 - \frac{E_1 (W (n))}{V_1 (W (n))} \int_0^\pi \{ z (\bar{s}) - z (s) \} dF (s),
\]

which simplifies to

\[
\frac{d}{dn} \left(\frac{[E_1 (W (n))]^2}{V_1 (W (n))} \right) \equiv - \frac{\int_0^\pi z (s) [z (\bar{s}) - z (s)] dF (s)}{V_1 (W (n))} < 0
\]

after substituting \(E_1 (W (n)) \) as per Eq. (A.6) and \(V_1 (W (n)) \) as per Eq. (A.11). Thus,

\[
X (n) \leq \frac{1}{(n-1)^2} \frac{[E_1 (W (n))]^2}{V_1 (W (n))} \leq \frac{1}{4} \frac{[E_1 (W (3))]^2}{V_1 (W (3))}
\]

for all \(n \geq 3 \), where \(n = 3 \) is the smallest market size for which there can be a well-defined equilibrium price in Eq. (13). If \(n_S > 3 \), then Eq. (A.7) defines \(\bar{s} \in (0, S) \) and hence \(E_1 (W (3)) \in (0, \infty) \) and \(V_1 (W (3)) \in (0, \infty) \). In other words, \(\frac{[E_1 (W (3))]^2}{V_1 (W (3))} \) is bounded. If instead \(n_S = 3 \), then \(\frac{[E_1 (W (3))]^2}{V_1 (W (3))} = \frac{[E_1 (Z)]^2}{V_1 (Z)} \), which is also bounded. It follows then that \(X (n) \) is bounded. Invoking the
condition on Z from Lemma 1, we can now conclude that there exists a bound $\sigma > 0$ such that
\[
\frac{dE_\theta(V^*(n))}{dn} < 0 \text{ for all } n \geq 3 \text{ if } \sigma_\theta^2 \leq \sigma. \quad \blacksquare
\]

Proof of Proposition 5

The first step is to consider what happens when the security is held fixed at Z. In this case, the investor’s expected value is simply (proportional to):

\[
EU(n) = \left[\left(\frac{\sigma_\theta}{\gamma} \right)^2 \frac{n-2}{n-1} \left(\frac{E(Z)}{V(Z)} \right)^2 + \frac{n}{n-2} \right] V(Z)
\]

where:

\[
\frac{\partial EU}{\partial n} = \left[\left(\frac{\sigma_\theta}{\gamma} \right)^2 \frac{1}{(n-1)^2} \left(\frac{E(Z)}{V(Z)} \right)^2 - \frac{2}{(n-2)^2} \right] V(Z)
\]

Therefore:

\[
\frac{\partial EU}{\partial n} \text{ sign} = \frac{\sigma_\theta}{\sqrt{2\gamma}} \frac{E(Z)}{V(Z)} - \frac{n-1}{n-2}
\]

where $\frac{n-1}{n-2}$ is a decreasing function of n that takes on a minimum value of 1 as $n \to \infty$.

Lemma A.1 Consider a minimum market size of $n_{\min} \geq 3$. Then $EU(n)$ is maximized at $n = n_{\min}$ if $\frac{\sigma_\theta}{\sqrt{2\gamma}} \frac{E(Z)}{V(Z)} < \sqrt{\frac{2(n_{\min}-1)}{n_{\min}-2}}$, and at $n \to \infty$ otherwise.

Proof. There are three cases from Eq. (A.14):

1. If $\frac{\sigma_\theta}{\sqrt{2\gamma}} \frac{E(Z)}{V(Z)} \leq 1$, then $\frac{\partial EU}{\partial n} < 0$ for all n. Thus, $EU(n)$ is maximized at $n = n_{\min}$.

2. If $\frac{\sigma_\theta}{\sqrt{2\gamma}} \frac{E(Z)}{V(Z)} \in \left(1, \frac{n_{\min}-1}{n_{\min}-2}\right)$, then there exists an $n \in (n_{\min}, \infty)$ such that $\frac{\partial EU}{\partial n} = 0$ but it minimizes $EU(n)$, i.e., $\frac{\partial^2 EU}{\partial n^2} > 0$. Thus, $EU(n)$ is maximized at either $n = n_{\min}$ or $n \to \infty$. Note that $EU(n_{\min}) > EU(\infty)$ reduces to $\frac{\sigma_\theta}{\sqrt{2\gamma}} \frac{E(Z)}{V(Z)} < \sqrt{\frac{n_{\min}-1}{n_{\min}-2}}$, where $\sqrt{\frac{n_{\min}-1}{n_{\min}-2}} < \frac{n_{\min}-1}{n_{\min}-2}$ is trivially true for any $n_{\min} \geq 3$.

3. If $\frac{\sigma_\theta}{\sqrt{2\gamma}} \frac{E(Z)}{V(Z)} \geq \frac{n_{\min}-1}{n_{\min}-2}$, then $\frac{\partial EU}{\partial n} > 0$ for all n. Thus, $EU(n)$ is maximized at $n \to \infty$. \square

Under ℓ-stability for $\ell = N$ in Definition 1, Lemma A.1 implies fragmented markets if $\frac{E(Z)}{V(Z)} < \frac{\gamma}{\sigma_\theta} \sqrt{\frac{2(n_{\min}-1)}{n_{\min}-2}}$ (because investors want to have a price impact to get higher compensation for risk) and a centralized market if $\frac{E(Z)}{V(Z)} > \frac{\gamma}{\sigma_\theta} \sqrt{\frac{2(n_{\min}-1)}{n_{\min}-2}}$ (because investors do not want to have a price impact in anticipation of taking large positions to get gains from trade).
The second step is to return to the model with an endogenous security, i.e., $W(n)$. For any $n \geq n_S$, the optimal security is $W(n) = Z$, where Z is independent of n. Thus, the investor’s expected value with endogenous security design, $E_0(V^i(n))$, equals $EU(n)$ for any $n \geq n_S$.

Consider the three cases in the proof of Lemma A.1. In Case 1, we can immediately conclude that $E_0(V^i(n))$ will be maximized at some $n < n_S$ given that $EU(n)$ is decreasing and convex for any $n \geq n_S$ (and $E_0(V^i(n))$ is assumed continuously differentiable at all points, including $n = n_S$). Thus, in Case 1, we get that only fragmented markets survive in equilibrium. In Cases 2 and 3, if $E_0(V^i(n))$ has at most one critical point over $n \in (n_{\min}, \infty)$, then it will suffice to just check the endpoints because the properties of $EU(n)$ imply that $E_0(V^i(n))$ is increasing and convex starting at some $n \in [n_S, \infty)$ and therefore that the critical point, if it exists, must be a minimum. Thus, in Cases 2 and 3, we get that only fragmented markets survive in equilibrium if and only if $E_0(V^i(n_{\min})) \geq E_0(V^i(\infty))$, or equivalently:

$$
\left(\frac{\sigma^2}{\gamma}\right)^2 \left[\left(\frac{E(Z)}{\sqrt{V(Z)}}\right)^2 - \left(\frac{E(W(n_{\min}))}{\sqrt{V(W(n_{\min}))}}\right)^2\right] \leq \frac{n_{\min} - 2}{n_{\min} - 1} \frac{V(W(n_{\min})) - V(Z)}{

$$

Under the condition on the payoffs of Z in Lemma 1, $\frac{d}{dn} \left(\frac{n_{\min} V(W(n))}{n - 2}\right) < 0$ for all n. Thus, $\frac{n_{\min} V(W(n_{\min}))}{n_{\min} - 2} > V(Z)$. This means that a contradiction of $E_0(V^i(n_{\min})) \geq E_0(V^i(\infty))$ requires both $\frac{E(Z)}{\sqrt{V(Z)}} > \frac{E(W(n_{\min}))}{\sqrt{V(W(n_{\min}))}} \sqrt{\frac{n_{\min} - 2}{n_{\min} - 1}}$ and $\frac{\sigma^2}{\gamma}$ sufficiently large. Also recall that being in Case 2 or 3 requires $\frac{\sigma^2 E(Z)}{\sqrt{\gamma V(Z)}} > 1$. Accordingly, only fragmented markets survive in equilibrium unless both $\frac{E(Z)}{\sqrt{V(Z)}}$ and $\frac{\sigma^2}{\gamma}$ are sufficiently large.

We now present an example of a distribution function $F(s)$ that delivers $E_0(V^i(n))$ with at most one critical point over $n \in (n_{\min}, \infty)$.

Consider without loss of generality $z(s) = s$ for $s \in [0,S]$. If s is uniformly distributed, i.e., $F(s) = \frac{s}{S}$, then Eq. (A.7) gives $\frac{3}{2} = a \sqrt{\frac{n - 2}{n - 1}}$, where $a \equiv \sqrt{\frac{\mu - \beta}{\gamma S}}$. Thus, from Eq. (17), $n_S = 2 + \frac{1}{a^2 - 1} \in (3, \infty)$ if and only if $a \in (1, \sqrt{2})$. Impose this restriction on a so that we can consider market structures where debt-like securities are traded, i.e., market structures where $n < n_S$ and thus $\frac{3}{2} \in (0, 1)$ from Proposition 2.

24 To accommodate the integer issue, also check for $n_{\min} + 1$. Qualitatively, the conditions are the same as for n_{\min}.

25 Recall from the proof of Proposition 2 that $a \geq \sqrt{2}$ would imply $W(n) = Z$ for all $n \geq 3$. Also recall that $a < 1$ would imply $W(n) \neq Z$ even as $n \to \infty$.
To obtain more compact expressions in what follows, define \(y \equiv \sqrt{\frac{n-2}{n-1}} \) so that \(\frac{7}{8} = ay \) and \(y \in \left[\frac{1}{\sqrt{2}}, \frac{1}{a} \right] \) for \(n \in [3, n_S] \). The investor’s expected payoff is then (proportional to):

\[
EV(y) = 3 \left(\frac{\sigma \theta}{\gamma S} \right)^2 \frac{y(2-ay)^2}{a(4-3ay)^2} + \frac{1}{12} \left(\frac{2}{y^2} - 1 \right) (ay)^3 (4-3ay)
\]

for \(y \leq \frac{1}{a} \). Given the properties of \(EU(n) \) derived earlier for \(n \geq n_S \), it will suffice to show that \(EV''(y^*) > 0 \) at any point \(y^* \leq \frac{1}{a} \) where \(EV'(y^*) = 0 \).

The first and second derivatives are

\[
EV'(y) = 6 \left(\frac{\sigma \theta}{\gamma S} \right)^2 \frac{(2-ay)(4-3ay)^2}{a(4-3ay)^2} - a^3 \left(ay - \frac{2}{3} + y^2 (1-ay) \right)
\]

and

\[
EV''(y) = 6 \left(\frac{\sigma \theta}{\gamma S} \right)^2 \left(\frac{6(2-ay)(4-3ay)^2}{(4-3ay)^3} - 1 \right) - a^3 (a + 2y - 3ay^2)
\]

respectively. If there exists a \(y^* \leq \frac{1}{a} \) such that \(EV' (y^*) = 0 \), then

\[
\frac{a^4 (ay^* - \frac{2}{3} + y^*^2 (1-ay^*)) (4-3ay^*)^2}{(2-ay^*)(4-3ay^* + 3ay^*^2)} = 6 \left(\frac{\sigma \theta}{\gamma S} \right)^2
\]

and thus \(EV''(y^*) > 0 \) if and only if

\[
a \left(ay^* - \frac{2}{3} + y^*^2 (1-ay^*) \right) \left(\frac{6}{4-3ay^*} - \frac{(4-3ay^*)^2}{(2-ay^*)(4-6ay^* + 3ay^*^2)} \right) > a + 2y^* - 3ay^*^2
\]

(A.15)

In the limiting case of \(a = \sqrt{2} \), the range \(y \in \left[\frac{1}{\sqrt{2}}, \frac{1}{a} \right] \) reduces to \(y = \frac{1}{\sqrt{2}} \). It is straightforward to verify that (A.15) is satisfied if \(y^* = \frac{1}{\sqrt{2}} \) does indeed solve \(EV'(y^*) = 0 \) at \(a = \sqrt{2} \). Both sides of (A.15) are continuous in \(a \) and \(y^* \), hence there exists an \(a \in (1, \sqrt{2}) \) such that (A.15) will be satisfied for any \(y^* \in \left[\frac{1}{\sqrt{2}}, \frac{1}{a} \right] \) for any \(a \in (a, \sqrt{2}) \). Note that \(a \equiv \sqrt{\frac{a_5 - \beta}{\gamma S}} \) and \(a \in (a, \sqrt{2}) \) defines a non-empty set of \(S \) for which the investor’s expected payoff will have at most one critical point whenever the state \(s \) is uniformly distributed over the interval \([0, S]\). \(\blacksquare \)

Proof of Lemma 2

With \(n_{AB} > n_{AC} > n_{BC} \), intermediary \(A \) has relationships with the greatest number of investors. The total number of investors with access to intermediary \(A \) is \(n_{AB} + n_{AC} \). If investors want to trade in the largest possible markets, then all investors with access to intermediary \(A \) end up with
A under ℓ-stability for $\ell = N$ in Definition 1, forming a market of size $n_{AB} + n_{AC}$. The remaining investors will form a market of size n_{BC} with either intermediary B or C, leaving one intermediary inactive.

Now suppose investors want to trade in the smallest possible markets. Under the assumption that the investor value function (evaluated at the optimal security) is monotonically decreasing in market size, we can start with any initial market structure and see how investors will move around to form a stable equilibrium. Consider an initial market structure where intermediary C gets n_{BC} investors (any of whom can move to intermediary B), intermediary B gets n_{AB} investors (any of whom can move to intermediary A), and intermediary A gets n_{AC} investors (any of whom can move to intermediary C). To reduce notation, we abstract from the integered nature of investors in what follows. With $n_{AC} > n_{BC}$, some of the investors with intermediary A will want to move to intermediary C. Specifically, $\frac{n_{AC} - n_{BC}}{2}$ investors will move from A to C, leaving each of A and C with $\frac{n_{AC} + n_{BC}}{2}$ investors. Note that $n_{AB} > n_{AC} > n_{BC}$ implies $n_{AB} > \frac{n_{AC} + n_{BC}}{2}$. Thus, some of the investors with intermediary B will want to move to intermediary A, triggering a further move from A to C. Denote by x the number of investors that move from B to A. The number of investors that further moves from A to C is then $\min\left\{ \frac{x}{2}, \frac{n_{AC} + n_{BC}}{2} \right\}$. This will leave intermediary $m \in \{A, B, C\}$ with \tilde{n}_m investors, where

$$
\tilde{n}_B = n_{AB} - x
$$

$$
\tilde{n}_A = \frac{n_{AC} + n_{BC}}{2} + x - \min\left\{ \frac{x}{2}, \frac{n_{AC} + n_{BC}}{2} \right\}
$$

$$
\tilde{n}_C = \frac{n_{AC} + n_{BC}}{2} + \min\left\{ \frac{x}{2}, \frac{n_{AC} + n_{BC}}{2} \right\}
$$

The movement of investors from B to A will stop when $\tilde{n}_B = \tilde{n}_A$, or equivalently

$$
n_{AB} - x = \frac{n_{AC} + n_{BC}}{2} + x - \min\left\{ \frac{x}{2}, \frac{n_{AC} + n_{BC}}{2} \right\} \quad (A.16)
$$

If $x \leq n_{AC} + n_{BC}$, then Eq. (A.16) simplifies to $x = 2n_{AB} - n_{AC} - n_{BC}$ so we would need $n_{AB} \leq 2(n_{AC} + n_{BC})$ to verify $x \leq n_{AC} + n_{BC}$. If instead $x > n_{AC} + n_{BC}$, then Eq. (A.16) simplifies to $x = \frac{2n_{AB}}{2}$ so we would need $n_{AB} > 2(n_{AC} + n_{BC})$ to verify $x > n_{AC} + n_{BC}$. Using $n_{AB} + n_{AC} + n_{BC} \equiv N$, we can summarize the solution to Eq. (A.16) as

$$
x = \begin{cases}
 n_{AB} - \frac{N}{3} & \text{if } n_{AB} \leq \frac{2N}{3} \\
 \frac{n_{AB}}{2} & \text{if } n_{AB} > \frac{2N}{3}
\end{cases}
$$

53
Thus, the equilibrium has three markets each of size $\frac{N}{3}$ if $n_{AB} \leq \frac{2N}{3}$. Otherwise, if $n_{AB} > \frac{2N}{3}$, the equilibrium has two markets each of size $\frac{n_{AB}}{2}$ and one market of size $N - n_{AB}$ and hence debt and equity will coexist for n_{AB} sufficiently large, specifically $\frac{n_{AB}}{2} > n_{S} > N - n_{AB}$, making the overall condition for coexistence $n_{AB} > \max \{ \frac{2N}{3}, 2n_{S}, N - n_{S} \}$.

Proof of Lemma 3

For ease of reference, we introduce the notation

$$G(n_m) \equiv \frac{\sigma^2}{2\gamma} n_m - 2 \left[E_1(W(n_m)) \right]^2$$

for the gains from trade term, and

$$R(n_m) \equiv \frac{\gamma}{2} n_m - 2 V_1(W(n_m))$$

for the compensation for risk term.

Taking derivatives:

$$G'(n_m) = \frac{\sigma^2}{2\gamma} n_m - 2 E_1(W(n_m)) \left[\frac{E_1(W(n_m))}{(n_m - 1)(n_m - 2)} + 2 \frac{dE_1(W(n_m))}{dn_m} - \frac{E_1(W(n_m))}{V_1(W(n_m))} \frac{dV_1(W(n_m))}{dn_m} \right]$$

and:

$$R'(n_m) = -\frac{\gamma}{2} n_m - 2 \left[\frac{2V_1(W(n_m))}{n_m(n_m - 2)} - \frac{dV_1(W(n_m))}{dn_m} \right]$$

If $n_m > n_{S}$, then $W(n_m) = Z$ and thus $\frac{dE_1(W(n_m))}{dn_m} = \frac{dV_1(W(n_m))}{dn_m} = 0$, which further implies $G'(n_m) > 0$ and $R'(n_m) < 0$.

If instead $n_m \leq n_{S}$, then Proposition 2 defines:

$$z(\tilde{s}_m) = E_1(W(n_m)) + \frac{\mu - \beta}{\gamma} n_m - 2$$

With $z(s) = s$ and $f(s) = \frac{1}{s}$, the equilibrium security has:

$$E_1(W(n_m)) = \tilde{s}_m \left[1 - \frac{\tilde{s}_m}{2} \right]$$

(A.17)

and:

$$V_1(W(n_m)) = \frac{\tilde{s}_m^3}{S} \left[1 - \frac{\tilde{s}_m}{4} \right]$$

(A.18)
where:
\[
\frac{1}{2} \frac{\sigma_m^2}{S} = \frac{\mu_\theta - \beta n_m - 2}{2\gamma n_m - 1}
\]
(A.19)

The total derivatives of \(E_1 (W(n_m)) \) and \(V_1 (W(n_m)) \) with respect to \(n_m \) are therefore:
\[
\frac{dE_1 (W(n_m))}{dn_m} = \left(1 - \frac{\sigma_m}{S} \right) \frac{\mu_\theta - \beta}{2\gamma} \frac{1}{(n_m - 1)^2}
\]
and:
\[
\frac{dV_1 (W(n_m))}{dn_m} = \frac{\sigma_m^2}{S} \frac{dE_1 (W(n_m))}{dn_m}
\]

Substituting into the expressions for \(G'(n_m) \) and \(R'(n_m) \), we get:
\[
G'(n_m) = \frac{\sigma_\theta^2}{4\gamma} \frac{\sigma_m}{(n_m - 1)^2} \frac{E_1 (W(n_m))}{V_1 (W(n_m))} \left(\frac{1}{3} + \left(1 - \frac{\sigma_m}{S} \right)^2 \right) > 0
\]

and:
\[
R'(n_m) = -\frac{\gamma \sigma_m^3}{4} \left(\frac{\mu_\theta - \beta n_m - 2}{\gamma S} \right)^{1/3} \frac{1 - 4 - n_m}{(n_m - 1)(n_m - 2)^2}
\]

To help establish \(R'(n_m) < 0 \), notice that \(R'(n_m) < 0 \) for all \(n_m \geq 3 \) if and only if \(R'(3) < 0 \). Therefore, \(\frac{\mu_\theta - \beta}{\gamma S} > \frac{2}{5} \) is sufficient for \(R'(n_m) < 0 \).\(^{26}\)

Proof of Proposition 6

Start with the intermediary’s expected payoff, \(E_0 (V_m) \). Substituting \(\lambda_m^{-1} \equiv (n_m - 2) \) into Eq. (14):
\[
E_0 (V_m) = \left[\beta E_1 (Z) + (\mu_\theta - \beta) E_1 (W(n_m)) - \frac{n_m - 1}{n_m - 2} \gamma V_1 (W(n_m)) \right] \times n_m
\]

This expression for \(E_0 (V_m) \) is increasing in \(n_m \) holding constant the security \(W_m \), implying that \(E_0 (V_m) \) is increasing in \(n_m \) for \(n_m > n_S \) since the equilibrium security for any \(n_m > n_S \) is simply \(W_m = Z \). It then remains to check that \(E_0 (V_m) \) is also increasing in \(n_m \) for \(n_m \leq n_S \) when evaluated at the equilibrium security \(W(n_m) \).

With \(z(s) = z(0) + \kappa s \) and \(f(s) = \frac{s}{2} \):
\[
E_1 (W_m) = z(0) + \kappa \sigma_m \left(1 - \frac{1}{2} \frac{\sigma_m}{S} \right)
\]

\(^{26}\)This condition on \(\frac{\mu_\theta - \beta}{\gamma S} \) is consistent with the sufficient condition in Lemma 1; in fact, the condition derived here delivers an \(\varepsilon \) that ensures the condition there holds.
\[V_1 (W_m) = \kappa \frac{\bar{s}_m^3}{S} \left(\frac{1}{3} - \frac{1}{4} \frac{s_m}{S} \right) \]

\[
\left(\frac{\bar{s}_m}{S} \right)^2 = \frac{\mu_\theta - \beta n_m - 2}{\kappa \gamma S} n_m - 1
\]

for \(n_m \leq n_S \). Thus,

\[
E_0 (V_m) = \kappa S \left[\frac{\beta}{2} + \frac{\mu_\theta z (0)}{\kappa S} + (\mu_\theta - \beta) \frac{\bar{s}_m}{S} \left(\frac{2}{3} - \frac{1}{4} \frac{s_m}{S} \right) \right] n_m
\]

for \(n_m \leq n_S \). It is easy to show that \(\frac{\bar{s}_m}{S} \left(\frac{2}{3} - \frac{1}{4} \frac{s_m}{S} \right) \) is increasing in \(\frac{\bar{s}_m}{S} \) for any \(\frac{\bar{s}_m}{S} \in [0, 1] \). We also know from Proposition 3 that \(\bar{s}_m \) is increasing in \(n_m \). Therefore, \(\frac{dE_0 (V_m)}{dn_m} > 0 \) for \(n_m \leq n_S \).

Turn now to total welfare. Ignore the integered nature of investors for the moment. There are \(N \) investors, each getting the expected payoff \(E_0 (V_i^m) \) in Eq. (18). There are also \(\frac{N}{n_m} \) active intermediaries, each getting the expected payoff \(E_0 (V_m) \) in Eq. (14). Inactive intermediaries receive a payoff of zero. Total (expected) welfare at date \(t = 0 \) is then:

\[
W = N \times E_0 (V_i^m) + \frac{N}{n_m} \times E_0 (V_m)
\]

where \(\frac{1}{n_m} \times E_0 (V_m) \) is the expected, per-capita payoff of an active intermediary.

Substituting in Eq. (14) and (18):

\[
W = N \left(\beta E_1 (Z) + (\mu_\theta - \beta) E_1 (W_m) + \frac{\sigma_\theta^2}{2 \gamma} n_m - 2 \left[\frac{E_1 (W_m)}{V_1 (W_m)} \right]^2 - \frac{\gamma}{2} V_1 (W_m) \right) \quad \text{(A.20)}
\]

Notice that the utility investors receive from the risk premium (i.e., compensation for risk term) is outweighed by the negative effect of variance on the price that the intermediary receives.

The expression for \(W \) is increasing in \(n_m \) holding constant the security \(W_m \). Therefore, \(W \) is increasing in \(n_m \) for \(n_m > n_S \) and it only remains to check that \(W \) is also increasing in \(n_m \) for \(n_m \leq n_S \) when evaluated at the equilibrium security. Using the expressions for \(E_1 (W (n_m)), V_1 (W (n_m)) \), and \(\bar{s}_m \) above, we can write:

\[
W = \beta \left(z (0) + \frac{\kappa S}{2} \right) N + z (0) \left[\tilde{\mu}_\theta + \frac{\tilde{\sigma}_\theta^2}{\tilde{\mu}_\theta} \left(\frac{1}{2} - \frac{x}{2} \right) + \frac{z (0)}{\kappa S} \frac{1}{2} \right] \kappa \gamma S N
\]

\[
+ \left[\tilde{\mu}_\theta x \left(1 - \frac{x}{2} \right) + \frac{\tilde{\sigma}_\theta^2}{\tilde{\mu}_\theta} \frac{x}{2} - \frac{x^3}{2} \left(\frac{1}{3} - \frac{x}{4} \right) \right] \gamma S^2 N
\]
for $n_m \leq n_S$, where $x = \frac{\bar{z}_m}{S}$, $\tilde{\mu}_\theta \equiv \frac{\nu \beta}{\kappa S}$, and $\tilde{\sigma}_\theta \equiv \frac{\sigma_\theta}{\kappa S}$. Taking derivatives:

$$
\frac{dW}{dx} = \frac{1}{\tilde{\mu}_\theta} \left[\frac{\sigma_\theta^2}{3} \left(\frac{2}{3} - x \right)^2 \kappa S N + \left(\frac{2}{3} \right)^2 (1 - x) \right] \gamma ^2 S^2 N
$$

The expression for \bar{s}_m rearranges to

$$
\tilde{\mu}_\theta = \frac{n_m - 1}{n_m - 2} x^2 > x^2
$$

and hence the second line in the expression for $\frac{dW}{dx}$ is positive. If $z(0) = 0$, then it follows immediately that $\frac{dW}{dx} > 0$. If instead $z(0) > 0$, then the first line in the expression for $\frac{dW}{dx}$ is positive if and only if:

$$
\frac{z(0)}{\kappa S} \left(1 - \frac{3x^2}{2} \right) < \frac{x^2}{2}
$$

A sufficient condition is $\frac{z(0)}{\kappa S} < \frac{x^2}{2}$ evaluated at $x = \sqrt{\frac{\bar{z}_m}{2}}$, which is the lowest possible x, specifically the x associated with $n_m = 3$. In other words, $z(0) < \frac{\bar{z}_m \kappa S}{4}$ is sufficient for $\frac{dW}{dx} > 0$. The (constrained efficient) planner thus chooses $n_m = N$ and $W_m = Z$ when $z(0)$ is not too large.

Return now to the integered nature of investors. Denote by $W(n_m)$ the right-hand side of Eq. (A.20), where $W_m \equiv W(n_m)$ is the equilibrium security. In a market structure satisfying Eq. (19), aggregate welfare is:

$$
W = n \times M_1 \times \frac{W(n)}{N} + (N - n \times M_1) \times \frac{W(n + 1)}{N} \leq W(n + 1) \leq W(N)
$$

where the inequalities follow from the fact that $W(n)$ is increasing in n when $z(0)$ is not too large.

Recalling that $W(N)$ is welfare when all investors trade in one market completes the proof. ■
Appendix B – Derivations for Section 4

Below we present derivations that support the discussion of comparative statics with respect to \(\gamma \) (end of Section 4.1) and \(z(0) \) and \(\kappa \) (Section 4.3).

1. Higher \(\gamma \)

Consider \(z(s) = s \) and \(f(s) = \frac{1}{s} \) as in Lemma 3. If \(n_m \leq n_S \), then Proposition 2 defines \(\bar{\pi}_m \) as per Eq. (A.19). It is straightforward to see that \(\bar{\pi}_m \) is decreasing in \(\gamma \), all else constant. We can also see from Eqs. (A.17) and (A.18) that \(E_1(W_m) \) and \(V_1(W_m) \) are increasing in \(\bar{\pi}_m \), with no direct dependence on \(\gamma \). Therefore, \(E_1(W_m) \) and \(V_1(W_m) \) are decreasing in \(\gamma \), for any market size \(n_m \leq n_S \).

Next, consider the gains from trade term:

\[
\frac{dG(n_m)}{d\gamma} = -\frac{\sigma^2_n}{4\gamma^2} n_m - 2 E_1(W(n_m)) \bar{\pi}_m \left(\frac{1}{3} + \frac{1 - \bar{\pi}_m}{S} \right) < 0
\]

\[
\frac{dG'(n_m)}{d\gamma} = -\frac{\sigma^2_n}{4\gamma^2} \frac{4}{9} - \frac{13}{9} \bar{\pi}_m + 2 \left(\frac{\bar{\pi}_m}{S} \right)^2 - \frac{7}{6} \left(\frac{\bar{\pi}_m}{S} \right)^3 + \frac{1}{4} \left(\frac{\bar{\pi}_m}{S} \right)^4 < 0
\]

Higher \(\gamma \) thus implies a smaller gains from trade term that increases less steeply with \(n_m \) (recall \(G'(n_m) > 0 \) from Lemma 3).

Finally, consider the compensation for risk term:

\[
\frac{dR(n_m)}{d\gamma} = \frac{1}{8} n_m - 2 \bar{\pi}_m \left(\bar{\pi}_m - \frac{2}{3} \right) > 0
\]

\[
\frac{dR'(n_m)}{d\gamma} = \frac{1}{8} \left(\frac{\mu - \beta}{\gamma} \right)^2 - \frac{1}{(n_m - 1)^3} - \frac{R'(n_m)}{2\gamma} > 0
\]

where the first inequality follows from \(\frac{\bar{\pi}_m}{S} > \frac{1}{\sqrt{2}} \), which is itself implied by Eq. (17) having a finite solution \(n_S \geq 3 \). Higher \(\gamma \) thus implies a larger compensation for risk term that decreases less steeply with \(n_m \) (recall \(R'(n_m) < 0 \) from Lemma 3, assuming \(\frac{\mu - \beta}{\gamma S} > \frac{2}{9} \) is still satisfied).

2. Higher \(z(0) \)

With \(z(s) = z(0) + s \) and \(f(s) = \frac{1}{s} \), the mean and variance of the underlying asset are \(E_1(Z) = z(0) + \frac{S}{2} \) and \(V_1(Z) = \frac{S^2}{12} \). Hence, \(\frac{dE_1(Z)}{dz(0)} > 0 \) and \(\frac{dV_1(Z)}{dz(0)} = 0 \).
If \(n_m \leq n_S \), then the mean of the asset-backed security is:

\[
E_1(W(n_m)) = z(0) + \bar{z}_m \left(1 - \frac{1}{2} \frac{\bar{z}_m}{S} \right)
\]

while the variance \(\mathcal{V}_1(W(n_m)) \) is still given by Eq. (A.18), with \(\bar{z}_m \) still given by Eq. (A.19). It is easy to see \(\frac{d\mathcal{V}_1(W(n_m))}{dz(0)} = \frac{d\bar{z}_m}{dz(0)} = 0 \) and \(\frac{dE_1(W(n_m))}{dz(0)} > 0 \) given the market size \(n_m \). Thus:

\[
\frac{dG(n_m)}{dz(0)} = \frac{\sigma_\theta^2}{\gamma} n_m - 2 E_1(W(n_m)) > 0
\]

\[
\frac{dG'(n_m)}{dz(0)} = \frac{\sigma_\theta^2}{4\gamma} \frac{1}{(n_m - 1)^2} \frac{1}{\bar{z}_m^2} \left(1 - \frac{1}{4} \frac{\bar{z}_m}{S} \right)^2 \left[\frac{1}{6} \frac{\bar{z}_m^2}{S} + z(0) \left(\frac{\bar{z}_m}{S} - \frac{2}{3} \right) \right] > 0
\]

and:

\[
\frac{dR(n_m)}{dz(0)} = \frac{dR'(n_m)}{dz(0)} = 0
\]

In words, higher \(z(0) \) implies a larger gains from trade term that increases more steeply with \(n_m \) but there is no effect on the compensation for risk.

Now consider that we start at \(z(0) = 0 \) and move to some \(z(0) > 0 \). We are then looking for parameters such that:

(i)

\[
\frac{\sigma_\theta}{\gamma S} > \frac{1}{3\sqrt{2}}
\]

so that we are in Case 2 or 3 from the proof of Proposition 5 before and after the move to \(z(0) > 0 \);

(ii)

\[
\left(\frac{\sigma_\theta}{\gamma S} \right)^2 \left[3 - \frac{(1 - \frac{1}{3} \frac{\bar{z}_m}{S})^2}{\bar{z}_m^2} \frac{n_{\text{min}} - 2}{n_{\text{min}} - 1} \right] < \frac{n_{\text{min}}}{n_{\text{min}} - 2} \left(\frac{\bar{z}_m}{S} \right)^3 \left(\frac{1}{3} - \frac{1}{4} \frac{\bar{z}_m}{S} \right) - \frac{1}{12}
\]

so that we are in an equilibrium with fragmented markets before the move to \(z(0) > 0 \); and

(iii)

\[
\left(\frac{\sigma_\theta}{\gamma S} \right)^2 \left[12 \left(\frac{z(0)}{S} + \frac{1}{2} \right)^2 - \left(\frac{z(0)}{S} + \frac{\bar{z}_m}{S} \left(1 - \frac{1}{2} \frac{\bar{z}_m}{S} \right) \right)^2 \frac{n_{\text{min}} - 2}{n_{\text{min}} - 1} \right] > \frac{n_{\text{min}}}{n_{\text{min}} - 2} \left(\frac{\bar{z}_m}{S} \right)^3 \left(\frac{1}{3} - \frac{1}{4} \frac{\bar{z}_m}{S} \right) - \frac{1}{12}
\]
so that we are in an equilibrium with one market after the move to $z(0) > 0$, where

$$
\left(\frac{\pi_m}{S} \right)^2 = \frac{\mu_\theta - \beta n_{\min} - 2}{\gamma S} \frac{n_{\min} - 1}{n_{\min} - 1}
$$

in both conditions (ii) and (iii). If the investor value function has at most one critical point, then any parameters that satisfy conditions (i) to (iii) will confirm the existence of a $z(0) > 0$ that eliminates the fragmented market structure.

The following figure illustrates the point:

This figure is drawn for $(\frac{\sigma_h}{\gamma S})^2 = 0.065$ and $\sqrt{\frac{\mu_\theta - \beta}{\gamma S}} = 1.15$ with $n_{\min} = 3$, ignoring the scaling factor $\frac{\gamma S^2}{2}$ on the investor’s value function. Specifically, we plot

$$
EV(y) = \left(\frac{\sigma_h}{\gamma S} \right)^2 \left[\frac{z(0)}{S} + ay(1 - \frac{ay}{2}) \right]^2 + a^3 y (2 - y^2) \left(\frac{1}{3} - \frac{ay}{4} \right)
$$

where $a \equiv \sqrt{\frac{\mu_\theta - \beta}{\gamma S}}$ and $y \equiv \sqrt{\frac{n_{\min} - 2}{n_{\min} - 1}}$. We choose $a \in (1, \sqrt{2})$ so that $n_S \in (3, \infty)$; see the derivation of the example at the end of the proof of Proposition 5. We also choose $(\frac{\sigma_h}{\gamma S})^2 > \frac{1}{18}$ to satisfy condition (i). The figure plots $EV(y)$ over the range $y \in \left[\frac{1}{\sqrt{2}}, 1 \right]$, which corresponds to the range $n \in [3, \infty]$. At $z(0) = 0$, the investor’s value function is maximized at the smallest possible market
size, \(n_m = 3 \). Thus, the equilibrium security has \(\frac{\bar{s}_m}{S} = \frac{1.15}{\sqrt{2}} < 1 \) and \(V_1(W(n_m)) < V_1(Z) \). In contrast, at \(\frac{z(0)}{S} = 0.1 \), the investor’s value function is maximized at the largest possible market size, \(N \to \infty \). Thus, the equilibrium security has \(\frac{\bar{s}_m}{S} = 1 \) and \(V_1(W(n_m)) = V_1(Z) \) for \(N \) sufficiently large, where we recall that \(V_1(Z) \) is independent of \(z(0) \).

3. Lower \(\kappa \)

With \(z(s) = \kappa s \) and \(f(s) = \frac{1}{S} \), the mean and variance of the underlying asset are \(E_1(Z) = \kappa \frac{S_2}{2} \) and \(\text{Var}_1(Z) = \frac{\kappa^2 S^2}{12} \).

If \(n_m \leq n_S \), then the mean and variance of the asset-backed security are:

\[
E_1(W(n_m)) = \kappa \bar{s}_m \left(1 - \frac{1}{2} \frac{\bar{s}_m}{S} \right)
\]

\[
\text{Var}_1(W(n_m)) = \kappa^2 \frac{\bar{s}_m^3}{S} \left(1 - \frac{1}{4} \frac{\bar{s}_m}{S} \right)
\]

where \(\bar{s}_m \) is characterized by:

\[
\left(\frac{\bar{s}_m}{S} \right)^2 = \frac{\mu_\theta - \beta n_m - 2}{\kappa \gamma S} \frac{n_m - 1}{n_m - 1}
\]

Thus:

\[
\text{Var}_1(W(n_m)) = \left(\frac{\mu_\theta - \beta n_m - 2}{\gamma} \frac{\sqrt{\kappa S}}{n_m - 1} \right)^2 \left(\frac{\sqrt{\kappa S}}{3} - \frac{1}{4} \left(\frac{\mu_\theta - \beta n_m - 2}{\gamma} \frac{1}{n_m - 1} \right) \right)
\]

so, for a given \(n_m \), an increase in \(\kappa \) will increase the variance \(\text{Var}_1(W(n_m)) \) of the asset-based security that the intermediary designs.

At any \(\kappa \), the condition for the investor’s value function to achieve a higher value at \(n = n_{\min} \) than at \(n \to \infty \) is:

\[
\left(\frac{\sigma_\theta}{\kappa \gamma S} \right)^2 \left[3 - \frac{y_{\min} \left(1 - \frac{a y_{\min}}{\sqrt{\kappa}} \right)^2}{\frac{a}{\sqrt{\kappa}} \left(\frac{3}{4} - \frac{a}{\sqrt{\kappa}} \right)} \right] < \left(\frac{a}{\sqrt{\kappa}} \right)^3 \frac{1}{4} y_{\min} \left(2 - \frac{a y_{\min}}{\sqrt{\kappa}} \right) \left(\frac{1}{3} - \frac{a}{\sqrt{\kappa}} \right) - \frac{1}{12} \quad (B.1)
\]

where \(a \equiv \sqrt{\frac{\mu_\theta - \beta}{S \gamma}} \) and \(y_{\min} \equiv \sqrt{\frac{n_{\min} - 2}{n_{\min} - 1}} \). Note

\[
n_{\min} = 2 + \frac{1}{\left(\frac{a}{\sqrt{\kappa}} \right)^2 - 1}
\]

from Eq. (17) and thus \(n_{\min} \in (3, \infty) \) requires \(\frac{a}{\sqrt{\kappa}} \in (1, \sqrt{2}) \). If the number of intermediaries \(M \) is
such that \(n_{\min} = 3 \), then \(y_{\min} = \frac{1}{\sqrt{2}} \) and Eq. (B.1) becomes:

\[
\left(\frac{\sigma_{\theta}}{\kappa \gamma S} \right)^2 < \frac{\bar{a} \left(\frac{\sqrt{2}}{3} - \frac{\bar{a}}{4} \right) \left[\frac{\bar{a}^3}{2\sqrt{2}} \left(1 - \frac{3\bar{a}}{4\sqrt{2}} \right) - \frac{1}{12} \right]}{\frac{3\bar{a}}{2\sqrt{2}} - \frac{7\bar{a}^2}{8} - 1} \equiv Y(\bar{a})
\]

where \(\bar{a} \equiv \frac{\alpha}{\sqrt{\kappa}} \in (1, \sqrt{2}) \). It is straightforward to verify that \(Y(\cdot) \) is positive, increasing, and concave over the interval \(\bar{a} \in (1, \sqrt{2}) \). It will then be sufficient to have \(\left(\frac{\sigma_{\theta}}{\kappa \gamma S} \right)^2 < Y(1) \). If the investor’s value function has at most one critical point, then the value function will be maximized at \(n = n_{\min} \) if \(\frac{\sigma_{\theta}}{\kappa \gamma S} \in \left(\frac{1}{3\sqrt{2}}, \sqrt{Y(1)} \right) \), where the lowerbound is the condition to be in Case 2 or 3 in the environment of the proof of Proposition 5.\(^{27}\) Note that this range for \(\frac{\sigma_{\theta}}{\kappa \gamma S} \) is non-empty, hence there will exist parameters such that an increase in \(\kappa \) (holding all other parameters constant) will not change the equilibrium market size.

The following figure presents an example:

![Investor Value Function](image)

This figure is again drawn for \(\left(\frac{\sigma_{\theta}}{\gamma S} \right)^2 = 0.065 \) and \(\sqrt{\frac{\mu_0 - \beta}{\gamma S}} = 1.15 \), ignoring the scaling factor \(\frac{S^2}{2} \).

\(^{27}\)The appeal of these cases is that they permit a direct comparison of the endpoints. Case 1 would require an additional step to show that the value function is maximized at \(n = n_{\min} \) rather than \(n \in (n_{\min}, n_S) \).
Specifically, we plot

\[EV(y) = \left(\frac{\sigma_\theta}{\gamma S} \right)^2 \frac{y (\sqrt{\kappa} - \frac{ay}{2})^2}{a \left(\frac{\sqrt{\kappa}}{3} - \frac{ay}{4} \right)} + a^3 y (2 - y^2) \left(\frac{\sqrt{\kappa}}{3} - \frac{ay}{4} \right) \]

over the range \(y \in \left[\frac{1}{\sqrt{2}}, 1 \right] \) for different values of \(\kappa \). For all plotted values of \(\kappa \), the investor’s value function is maximized at the smallest possible market size, \(n_m = 3 \), which corresponds to \(y = \frac{1}{\sqrt{2}} \).

Now suppose there is an increase in both \(\kappa \) and the number of intermediaries \(M \). Specifically, we move from \(\kappa = 1 \) and \(M \) supporting \(n_{\text{min}} = 4 \) to \(\kappa' \in \{1.1, 1.3\} \) and \(M' \) supporting \(n'_{\text{min}} = 3 \). At the initial parameters, the investor value function is given by the solid black line in the above figure but starting from the dashed red vertical bar, which is the \(y \) that corresponds to \(n_m = 4 \). The equilibrium for the initial parameters then has markets of size \(n_m = 4 \) and asset-backed securities with variance \(0.0816 \times S^2 \). At the new parameters, the investor value function is given by the dashed black line (if \(\kappa' = 1.1 \)) or the solid gray line (if \(\kappa' = 1.3 \)) starting at \(y = \frac{1}{\sqrt{2}} \), which is the \(y \) that corresponds to \(n_m = 3 \). The equilibrium for the new parameters then has markets of size \(n_m = 3 \) and asset-backed securities with variance \(0.0787 \times S^2 \) if \(\kappa' = 1.1 \) or variance \(0.0950 \times S^2 \) if \(\kappa' = 1.3 \).

Thus, compared to the initial equilibrium, the new equilibrium has more variable securities trading in smaller markets when the increase in \(\kappa \) is sufficiently large. More generally, going from \((\kappa, n) \) to \((\kappa', n') \) where \(\kappa' > \kappa \) and \(n' < n \), the condition for \(V_1(W') > V_1(W) \) is:

\[\sqrt{\kappa'} > \frac{3a}{4} \left(\frac{n' - 2}{n' - 1} \right)^{\frac{1}{2}} + \left(\frac{n - 2 n' - 1}{n - 1 n' - 2} \right)^{\frac{3}{2}} \left(\frac{\sqrt{\kappa} - 3a}{4} \left(\frac{n - 2}{n - 1} \right)^{\frac{1}{2}} \right) \]

which is to say \(\kappa' \) sufficiently large.

28 For the highest value of \(\kappa \) in the figure, the model is in Case 1, which, for the parameterization shown, is also able to deliver the smallest possible market size as the unique symmetric equilibrium.

29 The choice of \(n_{\text{min}} = 4 \) for the initial parameters is simply for illustration. With sufficiently fewer intermediaries to start, the unique symmetric equilibrium may be all investors trading \(Z \) in one market. The variance of \(Z \) when \(\kappa = 1 \) is \(0.0833 \times S^2 \), which is still lower than \(0.0950 \times S^2 \).
Appendix C – Costly Supply

Given n_m, intermediary m chooses a security W_m to supply in market m. He still supplies one unit of W_m per capita but now he chooses the number of units A_m of the asset Z that back the n_m units of W_m. Previously, we had assumed $A_m = n_m$. We now let the intermediary choose A_m at a cost $c(A_m)$, where $c(0) = 0$ and $c'(\cdot) > 0$. To fix ideas, consider $c(A_m) = \frac{\delta}{2}A_m^2$.

Intermediary m’s expected payoff at date $t = 1$ is:

$$V_m = p_m n_m + \beta E_1 (A_m Z - n_m W_m) - \frac{\delta}{2}A_m^2$$

The equilibrium price p_m is still given by Eq. (13) so:

$$E_0 (V_m) = \left[(\mu_0 - \beta) E_1 (W_m) - \frac{n_m - 1}{n_m - 2} \gamma \mathcal{N}_1 (W_m) \right] n_m + \beta E_1 (Z) A_m - \frac{\delta}{2}A_m^2$$

The Lagrangian for the intermediary’s problem can then be written as:

$$\mathcal{L} = (\mu_0 - \beta) n_m \int_0^S w_m (s) dF (s)$$

$$- \frac{\gamma n_m (n_m - 1)}{n_m - 2} \left[\int_0^S (w_m (s))^2 dF (s) - \left(\int_0^S w_m (s) dF (s) \right)^2 \right]$$

$$+ \beta E_1 (Z) A_m - \frac{\delta}{2}A_m^2 + \int_0^S v (s) [A_m z (s) - n_m w_m (s)] dF (s) + v_A A_m$$

where $v (s) \geq 0$ is the Lagrange multiplier on the feasibility constraint for state s, and $v_A \geq 0$ is the multiplier on $A_m \geq 0$.

The first order condition for $w_m (s)$ is:

$$v (s) = \mu_0 - \beta - 2 \gamma \frac{n_m - 1}{n_m - 2} [w_m (s) - E_1 (W_m)]$$

(C.2)

where $v (s) \geq 0$ and $A_m z (s) \geq n_m w_m (s)$ hold with complementary slackness. This implies that the equilibrium security, conditional on n_m, has payoffs:

$$w_m (s) = \begin{cases}
\frac{A_m}{n_m} z (s) & \text{if } s < \underline{s}_m \\
\frac{A_m}{n_m} z (\underline{s}_m) & \text{if } s \geq \underline{s}_m
\end{cases}$$
where:

\[\bar{s}_m = \arg \min_{k \in [0, S]} \left| z(k) - \frac{n_m}{A_m} \left(E_1(W_m) + \frac{\mu_\theta - \beta n_m - 2}{2\gamma n_m - 1} \right) \right| \quad (C.3) \]

and:

\[E_1(W_m) = \frac{A_m}{n_m} \left(z(\bar{s}_m) - \int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s) \right) \quad (C.4) \]

The first order condition for \(A_m \) is:

\[\delta A_m = \beta E_1(Z) + \int_{0}^{S} v(s) z(s) dF(s) + v_A \quad (C.5) \]

Using Eq. (C.2) with \(E_1(W_m) \) as defined in Eq. (C.4), we can rewrite Eq. (C.5) as:

\[
\delta A_m = \mu_\theta E_1(Z) + v_A - 2\gamma \frac{n_m - 1}{n_m - 2} \frac{A_m}{n_m} \left[E_1(Z) \int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s) - \int_{0}^{\bar{s}_m} z(s) [z(\bar{s}_m) - z(s)] dF(s) \right]
\]

Consider \(A_m > 0 \) so that \(v_A = 0 \):

1. If \(\bar{s}_m = S \), then Eq. (C.6) reduces to:

\[A_m = \frac{\mu_\theta E_1(Z)}{\delta + 2\gamma \frac{n_m - 1}{n_m(n_m - 2)} V_1(Z)} \]

which confirms \(A_m > 0 \). To confirm that Eq. (C.3) delivers \(\bar{s}_m = S \), we need:

\[z(S) - E_1(Z) < \frac{\mu_\theta - \beta n_m n_m - 2}{2\gamma A_m n_m - 1} \]

Substituting in the solution for \(A_m \), the condition for \(\bar{s}_m = S \) simplifies to:

\[\frac{n_m(n_m - 2)}{n_m - 1} > \frac{2\gamma \mu_\theta \left[E_1(Z) z(S) - E_1(Z^2) \right] + \beta V_1(Z)}{\delta (\mu_\theta - \beta)} \quad (C.7) \]

The left-hand side of (C.7) is increasing in \(n_m \) and the right-hand side is positive. Therefore, \(\bar{s}_m = S \) if \(n_m \) is above some threshold.

2. If the solution to Eq. (C.3) is interior, then \(\bar{s}_m \) is defined by:

\[\int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s) \equiv \frac{\mu_\theta - \beta n_m n_m - 2}{2\gamma A_m n_m - 1} \quad (C.8) \]
and we can use Eq. (C.8) to simplify Eq. (C.6) to:

$$A_m \left(\delta - 2 \gamma \frac{n_m - 1}{n_m (n_m - 2)} \int_0^{s_m} z(s) [z(\bar{s}_m) - z(s)] dF(s) \right) = \beta E_1(Z) \tag{C.9}$$

Using Eq. (C.9) to substitute A_m out of Eq. (C.8), we can then rewrite Eq. (C.8) as:

$$\frac{\beta E_1(Z)}{\mu_0 - \beta} \int_0^{s_m} [z(\bar{s}_m) - z(s)] dF(s) + \int_0^{s_m} z(s) [z(\bar{s}_m) - z(s)] dF(s) = \frac{\delta n_m (n_m - 2)}{2 \gamma n_m - 1} \tag{C.10}$$

which implies $\frac{\partial s_m}{\partial n_m} > 0$. Notice from Eq. (C.8) that $A_m > 0$ and, to confirm $\bar{s}_m < S$, we need n_m below the threshold that delivered $\bar{s}_m = S$ in the previous bullet, i.e., the opposite condition of (C.7).

We have now shown that the key insights of Propositions 2 and 3 continue to hold. If small markets are stable, then debt will be traded in that market structure. If large markets are stable, then equity will be traded in that market structure.

Next, we show that small markets are stable if heterogeneity in investor preference shocks, σ_0^2, is sufficiently low. The investor’s expected profit is still given by Eq. (18) so the key is to show that the compensation for risk term is decreasing in n_m. This amounts to showing $\frac{dV_1(W_m)}{dn_m} < \frac{2V_1(W_m)}{n_m(n_m-2)}$ for any n_m.

The variance of the equilibrium security derived above is:

$$V_1(W_m) = \left(\frac{A_m}{n_m} \right)^2 \left[\int_0^{s_m} [z(\bar{s}_m) - z(s)]^2 dF(s) - \left(\int_0^{s_m} [z(\bar{s}_m) - z(s)] dF(s) \right)^2 \right]$$

Consider first any n_m where the equilibrium security is $W_m \neq Z$. Then, A_m depends on \bar{s}_m and n_m as per Eq. (C.8) and \bar{s}_m depends on n_m as per Eq. (C.10). Therefore:

$$\frac{dV_1(W_m)}{dn_m} = \frac{2V_1(W_m)}{A_m} \left(\frac{dA_m}{dn_m} - \frac{A_m}{n_m} \right) + \frac{2A_m^2}{n_m^2} \left[1 - F(\bar{s}_m) \right] z'(\bar{s}_m) \frac{d\bar{s}_m}{dn_m} \int_0^{s_m} [z(\bar{s}_m) - z(s)] dF(s)$$

where:

$$z'(\bar{s}_m) \frac{d\bar{s}_m}{dn_m} = \frac{\delta n_m^2 - 2n_m + 2}{2 \gamma (n_m - 1)^2} \frac{\beta E_1(Z)}{\mu_0 - \beta} F(\bar{s}_m) + \int_0^{s_m} z(s) dF(s)$$

and:
\[\frac{dA_m}{dn_m} = \frac{A_m}{n_m} \frac{n_m^2 - 2n_m + 2}{(n_m - 1)(n_m - 2)} \left(1 - \frac{\delta A_m}{\mu_\theta - \beta} F(\bar{s}_m) + \int_{0}^{\bar{s}_m} z(s) dF(s) \right) \]

The condition we want to check, \(\frac{dV_1(W_m)}{dn_m} < \frac{2V_1(W_m)}{n_m(n_m - 2)} \), simplifies to:

\[[1 - F(\bar{s}_m)]' \frac{d\bar{s}_m}{dn_m} \int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s) \]

\[\leq \frac{1}{n_m} \left[\frac{n_m - 1}{n_m - 2} \frac{n_m dA_m}{A_m dn_m} \right] \left[\int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)]^2 dF(s) - \left(\int_{0}^{\bar{s}_m} [z(\bar{s}_m) - z(s)] dF(s) \right)^2 \right] \]

\[\Leftrightarrow \]

\[1 + [1 - F(\bar{s}_m)] \frac{[z(\bar{s}_m) - E_1(Z|s \leq \bar{s}_m)]^2}{V_1(Z|s \leq \bar{s}_m)} < \frac{\delta}{2} \frac{n_m(n_m - 2)}{n_m - 1} \frac{1}{F(\bar{s}_m)} \frac{n_m^2 - 2n_m + 2}{[\beta E_1(Z) / (\mu_\theta - \beta) + E_1(Z|s \leq \bar{s}_m)] [z(\bar{s}_m) - E_1(Z|s \leq \bar{s}_m)]} \]

\[\Leftrightarrow \]

\[[1 - F(\bar{s}_m)] \frac{[z(\bar{s}_m) - E_1(Z|s \leq \bar{s}_m)]^2}{(n_m - 1)^2 V_1(Z|s \leq \bar{s}_m)} < 1 - \frac{n_m^2 - 2n_m + 2}{(n_m - 1)^2} \frac{V_1(Z|s \leq \bar{s}_m)}{[\beta E_1(Z) / (\mu_\theta - \beta) + E_1(Z|s \leq \bar{s}_m)] [z(\bar{s}_m) - E_1(Z|s \leq \bar{s}_m)]} \]

It follows from \(z'(\cdot) > 0 \) that \(E_1(Z) \geq E_1(Z|s \leq \bar{s}_m) \) and \([z(\bar{s}_m) - E_1(Z|s \leq \bar{s}_m)] > \frac{V_1(Z|s \leq \bar{s}_m)}{E_1(Z|s \leq \bar{s}_m)} \), so a sufficient condition for \(\frac{dV_1(W_m)}{dn_m} < \frac{2V_1(W_m)}{n_m(n_m - 2)} \) is:

\[\frac{[z(\bar{s}_m) - E_1(Z|s \leq \bar{s}_m)]^2}{V_1(Z|s \leq \bar{s}_m)} < (n_m^2 - 2n_m + 2) \frac{\beta}{\mu_\theta} - 1 \]

The right-hand side is increasing in \(n_m \) so, with \(n_m \geq 3 \), it will be enough to have:

\[\frac{z(k) - E_1(Z|s \leq k)}{\sqrt{V_1(Z|s \leq k)}} < \sqrt{\frac{5\beta}{\mu_\theta} - 1}, \forall k \in (0, S] \]

with \(\beta > \frac{\mu_\theta}{5} \). Now consider any \(n_m \) where the equilibrium security is \(W_m = Z \), i.e., any \(n_m \) satisfying (C.7). Then:

\[V_1(W_m) = \left(\frac{A_m}{n_m} \right)^2 V_1(Z) = \left(\frac{\mu_\theta E_1(Z)}{\delta n_m + 2\gamma \frac{n_m - 1}{n_m - 2} V_1(Z)} \right)^2 V_1(Z) \]

67
and:
\[
\frac{dV_1(W_m)}{dn_m} = \frac{2 (\mu_{\theta} E_1(Z))^2 V_1(Z)}{\left(\delta n_m + 2 \gamma \frac{n_m-1}{n_m-2} V_1(Z)\right)^3} \left(\frac{2 \gamma V_1(Z)}{(n_m - 2)^2} - \delta\right)
\]

and therefore \(\frac{dV_1(W_m)}{dn_m} < 0\) for \(n_m\) unboundedly large, which falls in the range of \(n_m\) defined by (C.7). Accordingly, a sufficient condition for \(\frac{dV_1(W_m)}{dn_m} < \frac{2V_1(W_m)}{n_m(n_m-2)}\) for all \(n_m\) is that no value of \(n_m\) satisfies both \(\frac{2\gamma V_1(Z)}{(n_m-2)^2} = \delta\) and (C.7). Rewrite (C.7) as:

\[
\frac{n_m (n_m - 2)}{n_m - 1} > \frac{2\gamma V_1(Z)}{\delta} \left(\frac{1}{1 - \frac{\beta}{\mu_{\theta}}} \frac{E_1(Z) [z(S) - E_1(Z)]}{V_1(Z)} - 1\right)
\]

At any \(n_m\) where \(\frac{2\gamma V_1(Z)}{(n_m-2)^2} = \delta\), this inequality becomes:

\[
\frac{n_m}{(n_m - 1) (n_m - 2)} > \frac{1}{1 - \frac{\beta}{\mu_{\theta}}} \frac{E_1(Z) [z(S) - E_1(Z)]}{V_1(Z)} - 1
\]

which is eliminated by a lowerbound on \(\beta\) relative to \(\mu_{\theta}\). With the functional forms in Lemma 3, for example, this lowerbound is \(\beta > -\frac{\mu_{\theta}}{5}\), which is trivially true.

\(30\) In particular, \(\frac{n_m}{(n_m - 1) (n_m - 2)}\) is decreasing in \(n_m\) for \(n_m \geq 3\), so a sufficient condition is \(\beta > \frac{\mu_{\theta}}{5} \left(5 - \frac{2E_1(Z) [z(S) - E_1(Z)]}{V_1(Z)}\right)\).
Appendix D – Alternative Timing

Suppose the timing is such that intermediaries post securities first, then investors choose markets. Market choice is still made before the realization of investor preference shocks, but now intermediaries can compete for investors through security design. By posting securities first, we mean that the intermediary commits to a particular payoff profile before investors choose their markets. The intermediary is rational so his security design problem will take into account the best responses of investors. However, the intermediary cannot post a security whose payoff profile is contingent on the number of investors who show up. That would constitute a customized contract, not a standardized contract. The focus of our paper is on standardized contracts.

Consider two intermediaries, 1 and 2. Intermediary 1 offers a security W_1 and attracts n_1 investors. Intermediary 2 offers a security W_2 and attracts $N - n_1$ investors.

The expected value to investor i of trading W_m in a market of size n_m is still given by $E_0 (V_m)$ in Eq. (18). In the extreme case of $\sigma_\theta^2 = 0$:

$$E_0 (V_m) = \frac{\gamma}{2} \frac{n_m \gamma}{n_m - 2} V_1 (W_m)$$

By a continuity argument, all results derived under $\sigma_\theta^2 = 0$ will extend to $\sigma_\theta^2 \in (0, \bar{\sigma})$, where $\bar{\sigma}$ is some positive upperbound.

Notice that $\frac{n_m}{n_m - 2}$ in Eq. (D.1) is decreasing in n_m. Also recall that W_m is no longer responsive to n_m at the stage where investors choose their markets. Eq. (D.1) says that investors want a more variable security when σ_θ^2 is low. This is because the trading equilibrium delivers a low enough price (or, equivalently, a high enough risk premium) to compensate them for taking the risk. Investors also want to take this risk in very small markets, reflecting the fact that the risk premium increases with an individual investor’s price impact.

Given the securities W_1 and W_2, investors will move around until they are indifferent between the two intermediaries. We abstract from the integered nature of investors here to avoid unnecessary algebra. The best response of investors then yields a market structure characterized by n_1^*, where n_1^* solves:

$$\frac{n_1^*}{n_1^* - 2} V_1 (W_1) = \frac{N - n_1^*}{N - n_1^* - 2} V_1 (W_2)$$

(D.2)
Eq. (D.2) defines n_1^* as a function of $\frac{\gamma_1(W_1)}{\nu_1(W_2)}$. Differentiate Eq. (D.2) to get:

$$\frac{dn_1^*}{dV_1(W_1)} = \frac{n_1^*}{2} \frac{1}{n_1^* - 2} + \frac{1}{(N - n_1^* - 2)(N - n_1^*)} \frac{1}{V_1(W_1)}$$

This derivative is positive. If intermediary 1 posts a more variable security than intermediary 2, then intermediary 1 will attract more investors.

Each intermediary seeks to maximize his expected profit subject to a state-by-state feasibility constraint on the payoffs of the security he designs. He still offers one unit of the security to each investor in his market and, as in Appendix C, pays a cost to procure the assets that back this security. The Lagrangian for intermediary 1’s problem is thus given by Eq. (C.1) but with $n_1 = n_1^*$, where n_1^* depends on W_1 as per Eq. (D.2). The choice variables are the payoffs $w_1(s)$ for each state $s \in [0, S]$ and the number of units A_1 of Z that will back the n_1^* units of W_1.

The first order condition for $w_1(s)$ is:

$$v(s) = \mu_\theta - \beta - \frac{\gamma}{n_1^* - 2} \left(2(n_1^* - 1) + \frac{(n_1^*)^2 - 4n_1^* + 2}{n_1^*(n_1^* - 2)} \right) [w_1(s) - E_1(W_1)]$$

$$+ \frac{1}{n_1^* - 2} + \frac{1}{(N - n_1^* - 2)(N - n_1^*)} \frac{w_1(s) - E_1(W_1)}{V_1(W_1)} \left[(\mu_\theta - \beta) E_1(W_1) - \int_0^S v(s) w_1(s) dF(s) \right]$$

Multiply both sides by $w_1(s)$ then integrate over $s \in [0, S]$ to isolate:

$$\int_0^S v(s) w_1(s) dF(s) = (\mu_\theta - \beta) E_1(W_1) - \frac{\gamma}{n_1^* - 2} \frac{2(n_1^* - 1) + \frac{(n_1^*)^2 - 4n_1^* + 2}{n_1^*(n_1^* - 2)}}{1 + \frac{1}{n_1^* - 2} + \frac{1}{(N - n_1^* - 2)(N - n_1^*)}} V_1(W_1)$$

We can now rewrite the first order condition for $w_1(s)$ as:

$$v(s) = \mu_\theta - \beta - \frac{\gamma n_1^*}{n_1^* - 2} \frac{n_1^* - 2}{n_1^* - 1} + \frac{2(n_1^* - 1)(n_1^* - 2)}{(N - n_1^* - 2)(N - n_1^*)} [w_1(s) - E_1(W_1)]$$

(D.3)

The first order condition for A_1 still takes the form of (C.5).

In a symmetric equilibrium, both intermediaries offer the same security W. Eq. (D.2) implies
\(n_1^* = \frac{N}{2} \) which, when substituted into Eq. (D.3), implies:

\[
v(s) = \mu_0 - \beta - \gamma \frac{N^2 - 8}{N(N - 4)} [w(s) - E_1(W)]
\]

for each \(s \in [0, S] \). Therefore, the security that prevails in a symmetric equilibrium has payoffs:

\[
w(s) = \begin{cases}
\frac{2\lambda}{N} z(s) & \text{if } s < \bar{s} \\
\frac{2\lambda}{N^2} z(\bar{s}) & \text{if } s \geq \bar{s}
\end{cases}
\]

where the threshold \(\bar{s} \in [0, S] \) is defined by:

\[
\bar{s} = \arg \min_{k \in [0, S]} \left| z(k) - \frac{N}{2A} \left(E_1(W) + \frac{\mu_0 - \beta}{\gamma} \frac{N(N - 4)}{N^2 - 8} \right) \right|
\]

(D.4)

and \(A \) solves:

\[
A = \frac{\beta E_1(Z) + (\mu_0 - \beta) \int_0^\bar{s} z(s) dF(s)}{\delta + \frac{2\gamma(N^2 - 8)}{N^2(N - 4)} \left[\int_0^\bar{s} (z(s))^2 dF(s) - \left(\int_0^{\bar{s}} z(s) dF(s) \right)^2 - \int_0^{\bar{s}} z(s) dF(s) \int_0^{\bar{s}} z(s) dF(s) \right]}
\]

(D.5)

If the solution to Eq. (D.4) is interior, we can combine Eq. (D.4) and (D.5) to get:

\[
\frac{\beta E_1(Z)}{\mu_0 - \beta} \int_0^{\bar{s}} [z(\bar{s}) - z(s)] dF(s) + \int_0^{\bar{s}} z(s) [z(\bar{s}) - z(s)] dF(s) = \frac{\delta}{2\gamma} \frac{N^2(N - 4)}{N^2 - 8}
\]

We then need:

\[
\delta < \frac{2\gamma}{\mu_0 - \beta} \left[\mu_0 \left(z(S) E_1(Z) - E_1(Z^2) \right) + \beta V_1(Z) \right] \frac{N^2 - 8}{N^2(N - 4)}
\]

for the solution to indeed be interior, in which case:

\[
\frac{d\bar{s}}{dN} = \frac{\delta}{2\gamma} \frac{N^2(N^3 - 24N + 64)}{(N^2 - 8)^2} \frac{1}{z'(\bar{s}) \int_0^{\bar{s}} \left[z(s) + \frac{\beta E_1(Z)}{\mu_0 - \beta} \right] dF(s)} > 0
\]

where the inequality follows from \(N \geq 6 \) to ensure \(\frac{N}{2} \geq 3 \). Therefore, the alternative timing considered here does not change the result that debt would be traded in smaller markets than equity, all else the same.
Appendix E – Multiple Securities

Consider an intermediary that designs two securities, \(W^0 \) and \(W^1 \), for investors. There are \(n \) investors that can trade both securities. The demand functions of investor \(i \) are \(Q_{i0}^i \left(p_0, p_1; \theta^i \right) \) and \(Q_{i1}^i \left(p_0, p_1; \theta^i \right) \) for the securities \(W^0 \) and \(W^1 \), respectively, and her expected payoff after the realization of \(\theta^i \) (but before the realization of \(s \)) is:

\[
V_i = \left[\theta^i E_1 (W^0) - p_0 \right] q_0^i + \left[\theta^i E_1 (W^1) - p_1 \right] q_1^i - \frac{\gamma}{2} \left[\nu_i (W^0) q_0^i + 2 \text{Cov}_i (W^0, W^1) q_0^i q_1^i + \nu_i (W^1) q_1^i \right]^2
\]

The first order conditions of an investor \(i \) who trades both securities are:

\[
\left[\theta^i E_1 (W^0) - p_0 \right] - \gamma \left[\nu_i (W^0) q_0^i + \text{Cov}_i (W^0, W^1) q_1^i \right] - \frac{\partial p_0}{\partial q_0^i} q_0^i - \frac{\partial p_1}{\partial q_1^i} q_1^i = 0
\]

\[
\left[\theta^i E_1 (W^1) - p_1 \right] - \gamma \left[\nu_i (W^1) q_1^i + \text{Cov}_i (W^0, W^1) q_0^i \right] - \frac{\partial p_0}{\partial q_0^i} q_0^i - \frac{\partial p_1}{\partial q_1^i} q_1^i = 0
\]

Define \(\sigma_0^2 \equiv \nu_i (W^0), \sigma_1^2 \equiv \nu_i (W^1), \) and \(\sigma_{01} \equiv \text{Cov}_i (W^0, W^1). \) Also define \(\lambda_0^0 \equiv \frac{\partial p_0}{\partial q_0^i}, \lambda_0^1 \equiv \frac{\partial p_1}{\partial q_1^i}, \lambda_1^0 \equiv \frac{\partial p_0}{\partial q_1^i}, \) and \(\lambda_1^1 \equiv \frac{\partial p_1}{\partial q_0^i}. \) The investor’s first order conditions can then be expressed more compactly as:

\[
\begin{bmatrix}
\theta^i E_1 (W^0) - p_0 \\
\theta^i E_1 (W^1) - p_1
\end{bmatrix}
= \left(\gamma
\begin{bmatrix}
\sigma_0^2 & \sigma_{01} \\
\sigma_{01} & \sigma_1^2
\end{bmatrix}
+
\begin{bmatrix}
\lambda_0^0 & \lambda_0^1 \\
\lambda_1^0 & \lambda_1^1
\end{bmatrix}
\right)^{-1}
\begin{bmatrix}
q_0^i \\
q_1^i
\end{bmatrix}
\]

which isolates:

\[
\begin{bmatrix}
q_0^i \\
q_1^i
\end{bmatrix}
= \left(\gamma
\begin{bmatrix}
\sigma_0^2 & \sigma_{01} \\
\sigma_{01} & \sigma_1^2
\end{bmatrix}
+
\begin{bmatrix}
\lambda_0^0 & \lambda_0^1 \\
\lambda_1^0 & \lambda_1^1
\end{bmatrix}
\right)^{-1}
\begin{bmatrix}
\theta^i E_1 (W^0) - p_0 \\
\theta^i E_1 (W^1) - p_1
\end{bmatrix}
\]

Turn now to market clearing, which requires:

\[
\sum_i \begin{bmatrix}
q_0^i \\
q_1^i
\end{bmatrix} = \begin{bmatrix}
n \\
\phi n
\end{bmatrix}
\]

where \(\phi \) denotes the supply of \(W^1 \) relative to \(W^0 \). Rewrite as:

\[
\begin{bmatrix}
q_0^j \\
q_1^j
\end{bmatrix} + \sum_{i \neq j} \begin{bmatrix}
q_0^j \\
q_1^j
\end{bmatrix} = \begin{bmatrix}
n \\
\phi n
\end{bmatrix}
\]
where:

\[
\sum_{i \neq j} \begin{pmatrix} q_0^i \\ q_1^i \end{pmatrix} = \left(\gamma \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{pmatrix} + \begin{pmatrix} \lambda_0^2 & \lambda_1^1 \\ \lambda_0^1 & \lambda_1^2 \end{pmatrix} \right)^{-1} \sum_{i \neq j} \begin{pmatrix} \theta^i E_1(W^0) \\ \theta^i E_1(W^1) \end{pmatrix} \\
-(n-1) \left(\gamma \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{pmatrix} + \begin{pmatrix} \lambda_0^2 & \lambda_1^1 \\ \lambda_0^1 & \lambda_1^2 \end{pmatrix} \right)^{-1} \begin{pmatrix} p_0 \\ p_1 \end{pmatrix}
\]

from the first order conditions of investors \(i \neq j\). Rearrange the rewritten market clearing equation to isolate:

\[
\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \frac{\sum_{i \neq j} \theta^i}{n-1} \begin{pmatrix} E_1(W^0) \\ E_1(W^1) \end{pmatrix} + \frac{1}{n-1} \left(\gamma \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{pmatrix} + \begin{pmatrix} \lambda_0^2 & \lambda_1^1 \\ \lambda_0^1 & \lambda_1^2 \end{pmatrix} \right) \left(\begin{pmatrix} q_0^i \\ q_1^i \end{pmatrix} - \begin{pmatrix} n \\ \phi n \end{pmatrix} \right)
\]

Thus, the price impacts solve the system:

\[
\begin{pmatrix} \lambda_0^2 & \lambda_1^1 \\ \lambda_0^1 & \lambda_1^2 \end{pmatrix} = \frac{1}{n-1} \left(\gamma \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{pmatrix} + \begin{pmatrix} \lambda_0^2 & \lambda_1^1 \\ \lambda_0^1 & \lambda_1^2 \end{pmatrix} \right)
\]

which yields:

\[
\lambda_0^0 = \frac{\gamma \sigma_0^2}{n-2} \\
\lambda_1^0 = \lambda_0^1 = \frac{\gamma \sigma_{01}}{n-2} \\
\lambda_1^1 = \frac{\gamma \sigma_1^2}{n-2}
\]

We can now write the investor demands as:

\[
\begin{pmatrix} q_0^i \\ q_1^i \end{pmatrix} = \frac{1}{n-2} \frac{n-2}{\gamma n-1} \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{pmatrix}^{-1} \begin{pmatrix} \theta^i E_1(W^0) - p_0 \\ \theta^i E_1(W^1) - p_1 \end{pmatrix}
\]

which implies the market clearing prices:

\[
\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} = \frac{\sum_i \theta^i}{n} \begin{pmatrix} E_1(W^0) \\ E_1(W^1) \end{pmatrix} - \frac{n-1}{n(n-2)} \begin{pmatrix} \sigma_0^2 & \sigma_{01} \\ \sigma_{01} & \sigma_1^2 \end{pmatrix} \begin{pmatrix} n \\ \phi n \end{pmatrix}
\]

Turn next to the intermediary’s security design problem. The intermediary chooses \(W^0\) and
W^1 to maximize his expected payoff,

$$E_0 (V_m) = [E_1 (p_0) + \phi E_1 (p_1) + \beta E_1 (Z - W^0 - \phi W^1)] \times n$$

subject to the feasibility constraint

$$w^0 (s) + \phi w^1 (s) \leq z (s), \forall s \in [0, S].$$

The Lagrangian for the security design problem is then:

$$\mathcal{L} = [E_1 (p_0) + \phi E_1 (p_1) + \beta E_1 (Z - W^0 - \phi W^1)] \times n + \int_0^S v (s) [z (s) - w^0 (s) - \phi w^1 (s)] dF (s)$$

where $v (\cdot) \geq 0$ are Lagrange multipliers. Subbing in the equilibrium prices:

$$\mathcal{L} = \left[\beta E_1 (Z) + (\mu_\theta - \beta) (E_1 (W^0) + \phi E_1 (W^1)) - \gamma \frac{n-1}{n-2} \left(\sigma_\theta^2 + 2\phi \sigma_{01} + \phi^2 \sigma_1^2 \right) \right] \times n + \int_0^S v (s) [z (s) - w^0 (s) - \phi w^1 (s)] dF (s)$$

Subbing in the definitions of the expectations, variances, and covariance:

$$\mathcal{L} = \left[\beta E_1 (Z) + (\mu_\theta - \beta) \int_0^S (w^0 (s) + \phi w^1 (s)) dF (s) \right.$$

$$- \gamma \frac{n-1}{n-2} \left[\int_0^S (w^0 (s))^2 dF (s) - \left(\int_0^S w^0 (s) dF (s) \right)^2 \right]$$

$$- 2\phi \gamma \frac{n-1}{n-2} \left[\int_0^S w^0 (s) w^1 (s) dF (s) - \int_0^S w^0 (s) dF (s) \int_0^S w^1 (s) dF (s) \right]$$

$$- \gamma \frac{n-1}{n-2} \phi^2 \left[\int_0^S (w^1 (s))^2 dF (s) - \left(\int_0^S w^1 (s) dF (s) \right)^2 \right]$$

$$+ \int_0^S v (s) [z (s) - w^0 (s) - \phi w^1 (s)] dF (s)$$

Grouping like terms:

$$\mathcal{L} = \left[\beta E_1 (Z) + (\mu_\theta - \beta) \int_0^S (w^0 (s) + \phi w^1 (s)) dF (s) \right.$$

$$- \gamma \frac{n-1}{n-2} \left[\int_0^S (w^0 (s) + \phi w^1 (s))^2 dF (s) - \left(\int_0^S (w^0 (s) + \phi w^1 (s)) dF (s) \right)^2 \right]$$

$$+ \int_0^S v (s) [z (s) - w^0 (s) - \phi w^1 (s)] dF (s)$$

74
Thus, the intermediary’s problem is entirely a function of $w^0(\cdot)+\phi w^1(\cdot)$; the individual components $w^0(\cdot)$ and $w^1(\cdot)$ are not separately defined. The security design problem therefore recovers the one that delivers Proposition 2.