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Abstract

We develop a theory of financial innovation in which both market structure and the payoffs

of the claims being traded are determined endogenously. Intermediaries use the cash flows of

an underlying asset to design securities for investors. Demand for securities arises as investors

choose markets then trade using strategies represented by quantity-price schedules. We show

that intermediaries create increasingly riskier asset-backed securities when facing deeper markets

in which investors trade more competitively. In turn, investors elicit less risky securities when

they choose thinner markets, revealing a novel role for market fragmentation in the creation of

safer securities.
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1 Introduction

It has long been acknowledged that non-financial firms adjust product design in response to market

structure.1 Financial firms that mediate security issuances have the opportunity to do the same,

and anecdotally they do. However, little is known about the theoretical forces that shape the

relationship between the design of a financial claim and the market in which it trades. This is

especially so when it comes to standardized securities whose payoffs are not commissioned by any

one investor. What are financial intermediaries’incentives to adjust product design in response to

market structure when creating securities to connect investors with markets? What are investors’

incentives to participate in markets for certain securities?

We build a tractable model in which both security design and market structure are endogenously

determined to study these questions. We then use the model to speak to the intricate relationship

between the safety and liquidity of a security, which has recently received renewed interest in the

literature. Our environment is one where financial intermediaries use the cash flows of an underlying

asset to design standardized securities for investors to trade. A security specifies a payoff for every

realization of the underlying asset. As in Ross (1976) and Allen and Gale (1994), we consider that

financial innovation arises in response to investors’demand. However, key to our model is that the

demand for securities is itself endogenous. This demand is modeled in two steps. First, investors

choose a market in which to trade, which determines the market structure. Second, once markets

open and investors can trade, their trading strategies are represented by quantity-price schedules,

with each investor understanding the impact of her trade on the price of the security. Markets

can be thinner and more fragmented with investors trading more strategically, or deeper and less

fragmented with investors trading more competitively.

Financial intermediaries design securities knowing the depth of the markets they face. They do

so strategically, taking into account how the payoffs of the security they design will affect the price

at which investors ultimately trade the security in the market. Each investor chooses a market,

and thus commits to a financial intermediary, before intermediaries design securities.2 Investors

are rational and internalize how their choices will affect the market structure faced by financial

intermediaries and thus the design of the securities that will be traded.

There are two implicit frictions in the environment that are worth making explicit here. First,

1See Johnson and Myatt (2003), Johnson and Myatt (2006), and Bar-Isaac, Caruana, and Cuñat (2012).
2Various extensions are possible here, including one where intermediaries design securities before each investor

picks a market, which we explore as a robustness exercise.
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investors cannot directly invest in the same assets as financial intermediaries. This is realistic

as financial intermediaries frequently create asset-backed securities that give investors exposure to

markets that they could not otherwise invest in. Mortgage-backed securities are one such example.3

Second, intermediaries design securities bounded by limited liability. That is, a security’s payoff

cannot exceed the payoff of the asset that backs it in any given state of the world. In practice,

most securities are implicitly designed to respect this constraint. In our set-up, limited liability is

equivalent to the spanning constraint in the financial innovation literature (Duffi e and Rahi (1995))

which requires that the securities a financial intermediary issues span the payoff of the asset that

backs them.

We obtain two major sets of results. The first set of results characterizes the security that an

intermediary finds optimal to offer taking as given the market structure. We show that this security

depends monotonically on the depth of the intermediary’s market. In particular, we show (i) that

the optimal security belongs to the family of debt contracts, paying the lesser of a flat payoff and

the full value of the underlying asset in every state of the world, and (ii) that the state in which

the security starts paying the flat payoff is higher in markets with more investors. In other words,

financial intermediaries design progressively riskier asset-backed securities when facing investors

that trade more competitively. In the limit, the security approaches the payoff of the underlying

asset in all states, which we refer to simply as selling “equity”to the investor.

The intuition for this first set of results is as follows. When choosing how to design a security, the

intermediary’s main incentive is to obtain a high price for it. Investors naturally like high expected

payoffs but dislike risk, captured most simply as having mean-variance preferences. The equilibrium

price at which a security is traded is therefore increasing in its mean payoff and decreasing in the

variance of its payoffs across states. The intermediary thus faces a trade-off between the mean

and the variance of the security he designs, making a debt contract optimal as debt has the least

variance among all limited liability securities with the same expected value. Importantly, though,

the equilibrium price decreases less with the variance of the security in deeper markets where

investors have a lower price impact. Thus, the strength of the mean-variance trade-off faced by

the intermediary (and hence where on the spectrum of debt contracts the security lies) depends on

the depth of the market. The deeper the market, the less pronounced the trade-off and the more

equity-like the intermediary makes his security.

3Naturally, there are derivative securities, such as equity options, for which the investors can acquire both the
underlying asset (the equity security) and the derivative security (the equity option). These securities are therefore
not subject to the first friction in our environment.
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The second set of results focuses on the equilibrium market structure. This is crucial to ensure

that the securities intermediaries design in a given market structure can indeed be supported in

equilibrium. If no investor benefits from trading in a particular market structure, then we should

not expect the corresponding securities to arise in equilibrium.

When choosing which market to trade in, an investor weighs the gains from trade with other

investors against the ability to influence the security that the intermediary designs. An investor who

trades in a thinner market will have a larger price impact. On one hand, this amplifies the mean-

variance trade-off in the intermediary’s security design problem and delivers a less risky security.

On the other hand, it also amplifies the extent to which the investor will move the price of the

security against herself when trading with other investors.

Investors benefit from trading with each other because their valuations of any given security

are subject to idiosyncratic preference shocks as markets open. When investors expect to be

relatively homogeneous in their valuations of the same security, they anticipate limited benefits

from trading with each other and are therefore willing to accept a larger price impact in order

to elicit a less variable security from the intermediary. In contrast, when investors expect to be

relatively heterogeneous, they understand that they may want to engage in large trades with each

other so they seek to limit their price impact by choosing to trade in a large market, albeit with a

riskier security.

At the core of our theoretical model is the market power that investors have relative to the

financial intermediary that designs the security they trade, where market power is captured by

price impact. When investors trade in thin markets, they have more market power relative to

the intermediary. In this case, investors use their market power to obtain a security that is most

favorable to them. In contrast, when investors trade in a deep market, the intermediary uses its

relatively superior market power to design a security that is more favorable to it. These patterns

are supported by emerging empirical evidence that links market power to certain aspects of bond

design (e.g., Adelino, Frame, and Gerardi (2017) and Brancaccio and Kang (2022)). Our model

thus elucidates a theoretical mechanism through which market power affects security design when

market structure is endogenous.

By shedding light on the interaction between security design and market structure, our paper

can contribute to an important agenda that studies the relationship between the safety and liquidity

of a security. It is often assumed that safer securities are at least as liquid as riskier ones, but in

practice the relationship between safety and liquidity is complex (e.g., Friewald, Jankowitsch, and
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Subrahmanyam (2017) and Geromichalos, Herrenbrueck, and Lee (2022)). Our baseline model

predicts that less variable asset-backed securities are traded in thinner, more fragmented markets

while more variable asset-backed securities are traded in deeper, less fragmented markets when

securities are backed by the same underlying asset and every investor can freely choose a market

in which to trade. Introducing constraints on the market choice of investors generates asymmetric

equilibria where securities with different payoff profiles co-exist in markets of different sizes. If, in

addition, intermediaries differ in the underlying assets they use to design asset-backed securities,

then less variable securities may trade in deeper markets while more variable securities trade in

thinner markets. These results highlight that multiple factors contribute to the relationship between

the safety and the liquidity of a security.

A planner who chooses across market structures but is constrained to satisfy the equilibrium

security design of intermediaries and the trading equilibrium among investors (when the latter can

freely choose markets) would choose deeper markets, even though the security that emerges in

these markets has more variable payoffs. Intermediaries are always better off designing a security

for a large market than for a small market. Investors thus benefit at the expense of intermediaries

in any equilibrium where debt is traded. In aggregate, however, the benefits to investors in an

equilibrium where debt is traded are outweighed by the losses to intermediaries, such that total

welfare is higher when markets are deeper. If the planner could decouple the security design choice

from the market structure choice, then he could achieve the highest welfare by designing a debt

security for risk averse investors and having them all trade this security in one large market in order

to maximize the gains from trade. The problem is that security design cannot be decoupled from

market structure in equilibrium. This result is at the heart of our paper. Intermediaries respond

to market-based incentives when designing a security for investors to trade. These incentives come

from the price of the security, which is endogenously less sensitive to investors’risk aversion in a

large market because the price impact of an individual investor is decreasing in market size.

Related Literature This paper relates to several strands of literature. The most relevant studies

are those on security design and endogenous market structure.

The literature on security design has been very prolific over recent decades. The classic problem

explored in these papers is that of a firm needing to raise funds from an investor to finance an

investment project. In exchange, the firm proposes a security to the investor. A common result

in this literature is that debt is the optimal security in the presence of asymmetric information
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or moral hazard (e.g., Gale and Hellwig (1985), Gorton and Pennacchi (1990), Nachman and

Noe (1994), DeMarzo and Duffi e (1999), Biais and Mariotti (2005), Yang (2020), Hébert (2018),

Asriyan and Vanasco (2018)).4 We explore a variant of the typical set-up. In particular, financial

intermediaries issue securities which allow investors to have exposure to assets in which they cannot

directly invest. The family of debt contracts is optimal even absent informational asymmetries,

and, more importantly, financial intermediaries offer low-variance debt only when investors trade

in a thin market. As the market gets deeper, the optimal security becomes equity. Our paper

thus isolates investor market power as a force that disciplines the incentives of intermediaries in

security design. Isolating this force is important as investor market power can have unique policy

implications; see Babus and Hachem (2021) for an application of our model to regulatory debates

about centralized trading, specifically the introduction of a centralized exchange to improve market

access and increase liquidity.

Parallel to the literature on security design, there is a body of work on financial innovation that

studies the role of security issuances in completing markets. From the seminal paper of Allen and

Gale (1991) to the more recent contribution of Carvajal, Rostek, and Weretka (2012), the main

focus of this line of research is to analyze whether competition among asset-holders affects their

incentives to introduce new securities. Complementarily to this literature, we study a model in

which a financial intermediary’s decision to issue securities is affected by the strategic competition

between investors when trading the securities they are offered.

There is a young but growing literature on endogenous market structure. Babus and Parlatore

(2022), Cespa and Vives (2022), Dugast, Üslü, and Weill (2022), Lee and Wang (2018), and Yoon

(2018) provide models that seek to explain why trade takes places in a variety of venues, centralized

or decentralized. However, in these papers, the asset traded is taken to be exogenous. We endoge-

nize both the security design and the market participation decision, which allows us to study the

relationship between the type of security and the market structure in which it is traded.

A small number of papers study the effect of market structure on security design. In a set-up

which assumes that investors are better informed about the prospects of the issuer than the issuer

himself, Axelson (2007) shows that debt is optimal if the degree of competition among investors is

low. Rostek and Yoon (2022) analyze the role of market structure for introducing non-redundant

4 In Malenko and Tsoy (2018), a mixture of debt and equity can be optimal when the investor faces Knightian
uncertainty about the underlying project’s returns. Other models of endogenous capital structure instead assume
transaction costs of security issuance as in Allen and Gale (1988); see, for example, Corbae and Quintin (2019) on
the cyclical properties of safe debt.
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derivatives. In both of these papers, however, the market structure is taken to be exogenous. In

our paper, the market structure is endogenously determined. This is important, as it ensures that

the securities traded in a given market structure can indeed be supported in equilibrium.

The rest of the paper proceeds as follows: Section 2 introduces the model environment; Section

3 defines and characterizes the equilibrium; Section 4 connects some predictions of the model to

real world markets; Section 5 discusses aggregate welfare; and Section 6 concludes. All proofs are

collected in Appendix A.

2 The Model Set-Up

Our analysis focuses on how financial firms adjust the design of their securities in response to

the demand they face from investors. To capture the interactions between investors and financial

intermediaries in a simple setting, we adopt a standard security design framework in which we allow

investors to trade the security that intermediaries design. To this, we add a market formation

stage to capture how investors’ demand arises. This is a key step to ensure that the securities

intermediaries design in response to investors’demand can indeed be supported in equilibrium.

We consider an economy with three dates, t = 0, 1, 2, and two types of agents, financial inter-

mediaries and investors.

Intermediaries There are M ≥ 2 risk neutral, impatient financial intermediaries indexed by

m = 1, ...,M . Each intermediary has access to a risky asset Z at t = 0. The asset can be

interpreted as loans originated to firms or mortgages extended to households. Each unit of the

asset Z yields a payoff z (s) ≥ 0 if the aggregate state s ∈ [0, S] is realized at date t = 2. The

cumulative distribution function for states is F (s), with F (·) continuous and differentiable, and

the probability density function is f (s). Without loss of generality, we assume z′ (·) > 0.

A local market m is associated with each intermediary m. At t = 0 in each market m, the

intermediary sells claims to the payoff of asset Z to investors by issuing a security Wm that pays

wm (s) ≥ 0 in state s at date t = 2. The intermediary is the residual claimant on Z. Thus he is

effectively designing two securities, one that he offers to investors and one that he keeps for himself,

so that the two securities exhaust the payoff of asset Z, as is commonly assumed in the financial

innovation spanning literature (Duffi e and Rahi (1995)). Formally, this implies that the payoff of
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the security Wm is subject to a feasibility constraint of the form

wm (s) ≤ αmz (s) ,∀s ∈ [0, S] , (1)

where αm > 0 allows for the possibility that the quantity of the underlying asset Z available to

intermediary m differs from the quantity of Wm that he issues to investors. In the simplest case,

αm = 1 which simplifies (1) to

wm (s) ≤ z (s) , ∀s ∈ [0, S] . (2)

We use feasibility constraint (2) in our main set-up and study the more general case with constraint

(1) and αm endogenous in Online Appendix B.1. The simplified feasibility constraint in (2) is

consistent with an interpretation in which each intermediary issues an asset-backed security based

on a representative loan that he previously originated. The more general constraint studied in

Online Appendix B.1 is consistent with an interpretation in which each intermediary buys loans

from a loan originator in order to issue an asset-backed security.

Investors There are N ≥ 3 risk averse, patient investors, indexed by i = 1, ..., N , who have

mean-variance preferences.5 Investors do not have access to the asset Z. However, an investor who

wants exposure to Z can choose a local market m in which she can acquire some quantity of the

security Wm that intermediary m designs.

We model how investors’ demand for securities arises in two steps. First, investors choose

markets at date t = 0. An investor can choose at most one market, but multiple investors can

choose the same market. These choices determine a market structureM, which remains fixed for

the remaining periods. Second, markets open for trade at t = 1 and each security Wm is traded by

investors in market m. Investors are subject to idiosyncratic preference shocks between the time

they choose markets at t = 0 and the time they trade with each other at t = 1. These shocks

introduce a reason for investors to trade with each other at t = 1, as we will see below. Preference

shocks are I.I.D. across investors and independent of the realization of the state s.

When an investor i chooses a market m at t = 0, we say that i ∈ m. We denote by nm the

number of investors that choose market m. We consider a market m to be active if and only if

5The extensive use of mean-variance preferences in portfolio selection models sparked a debate about the utility
theoretic foundations of these preferences. Several solutions have been proposed for a general distribution of shocks.
One is to rationalize the mean-variance representation from a second-order Taylor approximation of a generic utility
function. Another is to derive mean-variance exactly from a quadratic utility function. The quadratic functional
form has been used widely in models with strategic competition, e.g., Vives (2011) and Rostek and Weretka (2012).
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nm > 2, as in Kyle (1989). In this case, we say thatm ∈M. A market structureM is characterized

by the number of active markets and by the number of investors in each active market. We define

a market structure to be symmetric if each active market m has the same number of investors

nm = n.

We model investors’trading strategies at t = 1 as quantity-price schedules, as in Kyle (1989)

and Vives (2011). In particular, the strategy of an investor is a map from her information set to the

space of demand functions, as follows. The demand function of an investor i ∈ m with preference

shock θi is a continuous function Qim : R → R which maps the price pm of the security Wm in

market m into a quantity qim she wishes to trade

Qim
(
pm; θi

)
= qim.

An investor i who trades qim ∈ R units of security Wm in market m at date t = 1 consumes Cim at

date t = 2, where

cim (s) = qimwm (s) , (3)

for each state s.

Timing To summarize, the timing of events in the model is as follows. At date t = 0, each

investor chooses a market m in which to trade. The intermediary in market m then designs the

security Wm. At date t = 1, each investor i learns her preference shock θi. All markets then open

and investors in each market m trade the security Wm. At date t = 2, the state s is realized.

Investors receive payoffs according their final holdings of the security. Consumption takes place.

In line with Ross (1976) and Allen and Gale (1994), we have taken the approach that financial

innovation is driven by investors’demand. For this, we have assumed that intermediaries design

securities after investors choose markets. At the same time, our focus is on studying the issuance of

standardized securities. For this, we have assumed that intermediaries design securities before the

preference shocks, θi, are realized. Thus, a security cannot be customized to address the specific

requirements of any particular investor.

Payoffs and Market Clearing We now formalize the payoffs of investors and intermediaries.

Given a market structure M and a security Wm that intermediary m designs at date t = 0, the
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expected payoff of an investor i in market m at date t = 1 as she engages in trade is

V i
m = θiE1

(
Cim
)
− γ

2
V1
(
Cim
)
− pmqim, (4)

where the parameter γ > 0 controls the degree of risk aversion and V (·) is the variance operator.

We use E1 (·) and V1 (·) to denote that expectations are being taken over the state s, which is the

only unknown at date t = 1. The preference shock θi is modeled as shifting the intercept of the

marginal utility of consumption of investor i, as in Rostek and Weretka (2012). It is conceptually

similar to an opposite shift in the investor’s risk aversion parameter but analytically simpler to

work with. The shock θi is independently distributed across investors according to a distribution

G (·) with mean µθ and standard deviation σθ and is also independent of the realization of the state

s.

Substituting Eq. (3) into Eq. (4), we obtain that investor i’s objective function at date t = 1,

before the uncertainty about the state of the world s has been resolved, is

V i
m =

[
θiE1 (Wm)− pm

]
qim −

γ

2
V1 (Wm)

(
qim
)2
, (5)

where E1 (Wm) ≡
∫ S
0 wm (s) dF (s) and V1 (Wm) ≡

∫ S
0 [wm (s)− E1 (Wm)]2 dF (s). In this refor-

mulation, the preference shock θi captures investor i’s valuation of the payoff she expects to obtain

from one unit of the security Wm. The heterogeneity that θi introduces across investors can be

interpreted as differences in liquidity needs, in the use of securities as collateral, in technologies to

repackage and resell cash flows, or in risk-management constraints, for example.

The price pm in Eq. (5) is the price at which local market m clears, given the supply of the

security Wm by intermediary m. To reduce notation, we assume that each intermediary m supplies

one unit per capita of the security Wm in his market.6 That is, intermediary m supplies nm units

of the security Wm. Then, the market clearing price pm is such that

∑
i∈m

Qim
(
pm; θi

)
= nm. (6)

6 If the intermediary is instead assumed to supply a fixed amount of Wm to his market, then we would obtain
results that mechanically go in the same direction as those in our main set-up while carrying additional notation.
Alternatively, if the intermediary could choose the total supply of Wm along with the state-by-state payoffs of Wm,
then he would have enough instruments to offset the impact of investors’market power on the price of Wm provided
he is subject to the feasibility constraint (2) and does not face any issuance costs. If, however, issuance costs are
introduced or the intermediary faces the more general feasibility constraint (1), then investors still have market power
relative to the intermediary, even if the intermediary can choose the supply of Wm.
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Turn now to the payoffs of intermediaries. An intermediary m supplies nm units of the security

Wm to investors in market m, and for each unit of the security, he receives the price pm implied

by Eq. (6) at date t = 1. Aside from supplying Wm to the market, the intermediary does not

take any position in this security. The intermediary is also the residual claimant on the payoff of

asset Z, and under constraint (2), he receives (Z −Wm) at date t = 2 for each unit of Wm that he

supplied.7

The trading protocol through which investors in market m acquire the securityWm corresponds

to a share auction as described by Wilson (1979).8 Given a market structure M and a security

Wm that the intermediary designs in a market m with nm investors at date t = 0, intermediary

m’s expected payoff at date t = 1 is

Vm = [pm + βE1 (Z −Wm)]× nm,

where β ∈ [0, 1] is a discount factor that captures the impatience of intermediaries relative to

investors.

3 Equilibrium

In this section, we define and characterize the equilibrium. We start by solving for the trading

equilibrium in each market m at date t = 1, given a market structure M and the securities Wm

that intermediaries design at date t = 0. We then characterize the security that each intermediary

designs in equilibrium for his market m at date t = 0, given a market structure M. Lastly, we

analyze the market formation game which determines the equilibrium market structureM at t = 0.

Definition 1 A subgame perfect equilibrium is a market structureM, a set of securities {Wm}m∈M,

and a set of demand functions
{
Qim
}
i∈m for investors in each active market m such that:

7We give intermediaries access to a suffi ciently large pool of the asset Z so that constraint (2) is satisfied. An
alternative would be to fix the quantity of Z available to intermediary m at some exogenous value. As we explain in
Online Appendix B.1, this alternative would generate mechanical effects that only reinforce our results.

8 In particular, our set-up is consistent with the interpretation that at date t = 1 each intermediary m functions
as a central counterparty and places the nm units of the security Wm with investors in his market by running the
following auction. Each investor i in market m is a bidder that submits a schedule indicating the quantity of the
security she demands at each price. The supply of the security is perfectly divisible and, in each market m, the
security is allocated at the clearing price, pm, which is the solution to the market clearing condition (6). Each
investor i receives a share qim of the security for which she pays pmqim.
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1. Qim solves each investor i’s problem at date t = 1

max
Qim

{[
θiE1 (Wm)− pm

]
Qim

(
pm; θi

)
− γ

2

(
Qim

(
pm; θi

))2 V1 (Wm)
}
, (7)

where the price pm satisfies market clearing, Eq. (6);

2. Wm solves each financial intermediary m’s problem at date t = 0

max
Wm

E0 {pm + β [E1 (Z)− E1 (Wm)]} × nm, (8)

subject to the feasibility constraint (2);

3. The market structure M is `-stable at date t = 0. That is, for any group L = {i1, ..., i`}

of investors, there is no subset in L that benefits from deviating and joining a different local

market.

Our notion of equilibrium market structure, described in the third bullet of Definition 1, allows

for multiple investors, not necessarily all in the same local market, to coordinate and jointly deviate

to another local market, m′. For a market structure M to be `-stable, the expected payoff any

investor ij ∈ L receives in her local market m must be at least as large as the expected payoff from

deviating to any other market m′, that is,

E0

(
V
ij
m

)
≥ E0

(
V
ij
m′

)
for all m′ 6= m, (9)

including those markets m′ /∈M. Thus, there is no group of up to ` investors that can benefit from

exiting their local markets and all joining an inactive market m′ (i.e., a market with nm′ ≤ 2) under

the market structureM. Similarly, there is no group of up to ` investors that can benefit from exiting

their local markets and all joining an active market m′ ∈M. Notice that ` = 1 corresponds to the

case where investors cannot coordinate and can only consider unilateral deviations. The ability of

investors to coordinate, as captured by ` > 1, can be the result of a financial intermediary poaching

investors to join his local market rather than explicit cross-market coordination by investors. Our

notion of an `-stable equilibrium market structure is related to the concept of group/strong stability

defined in Roth and Sotomayor (1990) and used more recently by Farboodi (2021).

It is important to note that all agents act strategically. This implies that each investor i ∈ m

takes into account her price impact in market m when submitting her demand. Similarly, an

12



intermediary understands how the security he designs at date t = 0 affects the price at which

investors trade it at date t = 1. At the market formation stage, each investor also takes into

account how her market choice shapes the security that the intermediaries design, as well as the

price at which trade takes place at date t = 1. To streamline the exposition, we restrict our

attention to equilibria in which the market structure is symmetric, intermediaries design the same

security, and agents have linear trading strategies.

The rest of this section characterizes the equilibrium. As mentioned earlier, we solve first for

the trading equilibrium conditional on a market structure and a set of securities (Section 3.1), then

for the equilibrium security conditional on a market structure (Section 3.2), and finally for the

equilibrium market structure (Section 3.3).

3.1 The Trading Equilibrium

At date t = 1, after each investor i learns her preference shock θi, all active markets open and

trade takes place. In each market m, an investor chooses her trading strategy in order to maximize

her expected payoff, understanding that she has impact on the price pm. As is standard in similar

models, we simplify the optimization problem (7), which is defined over a function space, to finding

the functions Qim
(
pm; θi

)
pointwise; see Vives (2008) for a comprehensive treatment. For this, we

fix a realization of the set of preference shocks,
{
θi
}N
i=1
. Then, we solve for the optimal quantity

qim that each investor i ∈ m demands in market m when she takes as given the demand functions of

the other investors in market m. Thus, we obtain investor i’s best response quantity qim in market

m for each realization of the preference shocks of the other investors in market m. This gives us

a map from prices to quantities, or the investor’s optimal demand function point by point. We

describe the procedure in detail below.

The first order condition for an investor i in market m is

θiE1 (Wm)− pm −
(
∂pm,−i
∂qim

+ γV1 (Wm)

)
qim = 0, (10)

where pm,−i is the residual inverse demand of investor i implied by

qim +
∑

j∈m,j 6=i
Qjm

(
pm; θj

)
= nm. (11)

An investor i ∈ m chooses to trade a quantity qim of the security Wm so that her marginal
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benefit equalizes her marginal cost of trading. The first term in the first order condition (10) is the

marginal benefit of increasing the final holdings of the security Wm for investor i, which is given

by the expected value of the security scaled by the investor’s preference shock θi. The remaining

terms in Eq. (10) represent investor i’s marginal cost of increasing her demand. The second

term represents the price that the investor pays to acquire one unit of the security Wm. Investors

also incur indirect costs, captured in the last term in Eq. (10). First, since the investors trade

strategically, increasing the quantity demanded has an impact on the market clearing price. Note

that the price impact implied by Eq. (11) will be non-stochastic, and hence independent of the

realization of the preference shocks
{
θi
}
i∈m, when the demands of the other investors in market

m are linear. Second, investors are risk averse, which maps into a holding cost of the security

that increases proportionally to the variance of Wm as the quantity demanded increases. Eq. (10)

implies that investor i’s best response demand function is linear when the demands of the other

investors in market m are linear. The following proposition characterizes the trading equilibrium

in a market m.

Proposition 1 Given a market structure M and a set of securities {Wm}m∈M, there exists a

unique symmetric linear equilibrium that characterizes investors’trading strategies in each market

m, as follows. The equilibrium demand function of an investor i in market m is

Qim
(
pm; θi

)
=

1

(1 + λm) γV1 (Wm)

[
θiE1 (Wm)− pm

]
, (12)

where λ−1m ≡ (nm − 2) is an index of market depth. The equilibrium price in market m is

pm =

(
1

nm

∑
i∈m

θi

)
E1 (Wm)− (1 + λm) γV1 (Wm) . (13)

Proposition 1 shows that investor i buys or sells the security Wm depending on whether her

valuation θiE1 (Wm) of the security’s expected payoff is above or below the price pm at which she can

trade. However, as can be seen from the denominator of Eq. (12), the investor will restrict the size

of her trade for two reasons. First, she is risk averse and the security is risky. Thus, the more risk

averse the investor is (as proxied by a higher γ), the less she will trade. Similarly, the more risky the

security is (as reflected in a higher variance of payoffs across states), the less of it the investor trades,

everything else constant. Second, the investor has a price impact, ∂pm,−i/∂qim = λmγV1 (Wm), that

decreases with market depth, λ−1m . In other words, the larger the market is, the more the investor
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can trade without moving the price against herself.

The equilibrium price in market m, characterized by Eq. (13), is the expected payoff of the

security Wm, scaled by the average valuation of the investors in market m, minus a risk premium.

The risk premium exists because investors are risk averse and have exposure to a risky security

that is in positive fixed supply.

Given a realization of investors’preference shocks,
{
θi
}N
i=1
, it follows from Eq. (13) that the

price of the security Wm is lower in a thinner market. The price of the security also decreases with

the variance of the security, everything else constant. However, the price decreases less with the

variance of the security as the market becomes deeper.9 These effects arise because investors are

strategic and dislike risk. In a smaller market, changes in the demand of an individual investor have

a larger impact on the price of the security. Furthermore, the riskier the security is, the less of it a

risk averse investor will demand. If an investor demands less of the security, more will be available

to other investors. The price will then have to fall so that, on average, other investors are content

with holding more of the security. As the size of the market increases, the price impact of any one

investor falls. An increase in riskiness is thus met with a smaller decrease in price compared to a

smaller market where a strategic decrease in demand by one investor leads to a bigger price drop.

The effects of market depth and the variance of the security on the price are typical of models

in which investors strategically trade risky assets in positive net supply by submitting demand

functions. In contrast to standard models, however, in our model both the variance of the security

and the market depth are endogenous. In particular, the security is the choice of the intermediaries,

while the market structure, and implicitly the market depth, is the outcome of investors’choices.

Our paper seeks to understand how these forces interact.

3.2 The Equilibrium Security

At the end of date t = 0, after the market structure is determined, each active intermediary m

designs a securityWm in response to investors’demand in his market. In particular, an intermediary

chooses the payoff wm (s) of the security for each state s to maximize his expected profit in (8),

subject to the feasibility constraint (2). The constraint (2) restricts the intermediary to offer

investors a security with a payoff that does not exceed what the intermediary realizes on the asset

9To verify this, consider the cross-partial derivative of the price pm with respect to the variance of the secu-
rity Wm and the number of investors in market m, holding everything else constant. This derivative is given by
∂

∂nm

∂pm
∂V1(Wm)

∣∣∣
E1(Wm)=cst

= −γ ∂λm
∂nm

> 0.
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Z in any state s.

Taking the expectation at date t = 0 of the price pm at which investors in market m trade the

security Wm (i.e., the price in Eq. (13)) and substituting it into (8), we obtain that intermediary

m designs the security Wm to maximize the following objective function:

E0 (Vm) = [βE1 (Z) + (µθ − β)E1 (Wm)− (1 + λm) γV1 (Wm)]× nm. (14)

It is transparent that the intermediary benefits from offering a security that pays well in expectation,

as the expected price at which investors trade is increasing in E1 (Wm).10 At the same time, the

intermediary increases his expected profit if he offers a security with low variance, as the expected

price at which investors trade is decreasing in V1 (Wm). In fact, if he were unconstrained, the

intermediary would offer a security with infinite mean and zero variance. However, because the

payoff of the securityWm cannot exceed the payoff of the asset Z, the intermediary faces a trade-off

between the mean and the variance of the security he designs. Since the weight on the variance in

the intermediary’s expected profit in Eq. (14) depends on the depth λ−1m of the market in which

the security is traded, how exactly this trade-off is resolved will depend on the market structure,

as characterized in the following proposition.

Proposition 2 Suppose µθ > β so that intermediaries find it profitable to design securities for

investors. In any market m with nm investors, intermediary m designs a security Wm with payoffs

wm (s) =

 z (s) if s < sm

E1 (Wm) + µθ−β
2γ

nm−2
nm−1 if s ≥ sm

(15)

where the threshold state sm ∈ [0, S] is defined by

sm =

 z−1
(
E1 (Wm) + µθ−β

2γ
nm−2
nm−1

)
, ∀nm < nS

S, ∀nm ≥ nS
(16)

and nS is finite if and only if the equation

nS − 2

nS − 1
=

2γ

µθ − β
[z (S)− E1 (Z)] (17)

10Notice that E0 (Wm) = E0 (E1 (Wm)) is the law of iterated expectations and, since there is no information being
revealed between t = 0 and t = 1, it follows that E0 (Wm) = E1 (Wm).
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has a solution nS ≥ 3.

Proposition 2 shows that intermediary m finds it optimal to design a security that will pay the

lesser of a flat payoff and the full value of the asset Z in every state of the world. The security payoff

depends on the market structure, the distribution of the underlying asset Z, and the preferences of

investors and intermediaries. We say that the security is debt if it pays the flat payoff in at least

some states (i.e., the security is debt if s̄m < S). The flat payoff that is paid in states s ≥ s̄m

represents the face value of the security. If the security replicates the payoff of the asset Z in all

states, then the intermediary sells everything to the investors and passes through the payoffs of the

underlying asset Z. For convenience, we refer to the security that replicates the payoff of the asset

Z in all states as equity.11 In our model, equity is the limiting case of a debt security where the

threshold state above which the security pays a flat payoff is s̄m = S.

We have the following three cases from the characterization of nS in Proposition 2. If
2γ

µθ−β
[z (S)− E1 (Z)] ≤ 1

2 , then the intermediary finds it optimal to sell everything and offer equity

in any market structure. If 2γ
µθ−β

[z (S)− E1 (Z)] ≥ 1, then the intermediary finds it optimal to

design a debt security in any market structure, including in markets with infinitely many investors.

These two cases represent corner solutions of the intermediary’s optimization problem. If instead
2γ

µθ−β
[z (S)− E1 (Z)] ∈

(
1
2 , 1
)
, then intermediary m offers a debt security if the number of investors

nm in market m is below a threshold nS , otherwise he offers equity.

Figure 1 illustrates the optimal security for different values of nm in the last case where the

solution to the intermediary’s optimization problem can be either debt or equity. The rest of this

section expounds the properties depicted in the figure.

The rationale for why debt is the security that the intermediary chooses from the set of all

possible security profiles stems from the following property of a debt security: there are no two

states s′ and s′′ such that wm (s′) < z (s′) and wm (s′) < wm (s′′). In other words, if the feasibility

constraint (2) does not bind in either state s′ or state s′′, the debt security yields the same payoff in

both states, and if constraint (2) binds only in one of the two states, the payoff in that state must

be smaller than the payoff on the flat part of the debt contract. Suppose intermediary m chooses a

security that does not have this property. Then a deviation which increases the payoffof the security

in state s′ by εs′ > 0 and decreases the payoff of the security in state s′′ by εs′′ = f(s′)
f(s′′)εs′ decreases

the variance of the security without changing its mean. Since the intermediary’s expected profit in

11Typically, in the literature on security design, an equity security has a payoff that yields a fraction of the
underlying asset. We extend this definition to accommodate a fraction of 1.
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Figure 1: Dependence of optimal security on market size.

Eq. (14) is decreasing in the variance of the security, it follows that such a deviation is profitable.

Therefore, it cannot be optimal for the intermediary to choose any security other than debt. This

argument is similar to the one Hébert (2018) uses to show that debt is the optimal contract in

the presence of moral hazard. Novel to our framework, however, is how the equilibrium security

depends on the market structure in which it is traded. The following proposition characterizes the

relationship between the market structure and the debt contract that the intermediary chooses.

Proposition 3 Suppose 2γ
µθ−β

[z (S)− E1 (Z)] > 1
2 so that nS ≥ 3. Then the threshold state s̄m

defined by (16) is increasing in the number of investors nm in market m as long as nm ≤ nS.

Proposition 3 shows that when the intermediary designs a debt security, he will adjust its payoff

depending on the market in which the security is traded. In particular, the lowest state in which a

security Wm pays the flat payoff increases with the number of investors in market m, as depicted in

Figure 1. In other words, conditional on designing a debt security, the intermediary offers a higher

face value in a larger market. At the same time, the larger the market, the more variable the security

that the intermediary designs. This property of the equilibrium security extends automatically to

the case when Eq. (17) does not have a finite solution and the intermediary offers debt in markets

of any size.

To understand Proposition 3, we appeal to the intuition developed at the end of Section 3.1

about the forces that affect the price of a security Wm. To start, consider a state s where the

security that intermediary m designs pays wm (s) < z (s). If the intermediary increases wm (s)

slightly, holding constant the payoffs in all other states, then he increases both the mean and
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the variance of the security Wm. The increase in the mean of the security works in favor of

the intermediary because it increases the price he expects to receive, whereas the increase in the

variance of the security decreases the intermediary’s expected profit. However, as we explained in

Section 3.1, a higher variance has a greater impact on the expected price in a small market than

in a large market. In contrast, as we can see from Eq. (13), the impact of a higher mean on the

expected price does not depend on the size of the market. Therefore, the marginal benefit to the

intermediary of an increase in wm (s) is independent of nm, while the marginal cost is decreasing in

nm. Since a profit-maximizing intermediary sets wm (s) to equate marginal benefit and marginal

cost, it follows that he will increase wm (s) by more in a large market than in a small market. Given

that the intermediary finds it optimal to issue a debt security, he can accomplish this by increasing

the threshold state above which the security pays a flat payoff. The next corollary formalizes this

discussion and follows immediately from Proposition 3.

Corollary 1 Suppose that Eq. (17) has a finite solution nS ≥ 3. The security Wm that the

intermediary designs in market m has the following properties:

1. ∂E1(Wm)
∂nm

> 0 for any nm ≤ nS;

2. ∂V1(Wm)
∂nm

> 0 for any nm ≤ nS.

Two polar securities can be of interest: riskless debt, which is a security that has a flat payoff

in all states of the world, and equity, which replicates the payoff of the asset Z in every state.

Proposition 2 allows us to understand whether these securities can be offered by intermediaries in

equilibrium. The results are collected in the following corollary.

Corollary 2 Fix a market structureM.

1. In any market m ∈M with nm ≥ nS investors, where nS ∈ [3,∞) and satisfies Eq. (17), the

intermediary offers a security that pays the payoff of the asset Z in every state.

2. There is no market m ∈M in which the intermediary offers a security that pays a flat payoff

in all states of the world.

The first part of Corollary 2 is a direct implication of Proposition 2 and the discussion that

follows it. Any intermediary with at least nS investors will find it optimal to sell everything and

offer equity. The second part of Corollary 2 says that intermediaries will never offer riskless debt.
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Suppose to the contrary that there is a market size nm ≥ 3 for which an intermediary would find

it optimal to offer riskless debt. The variance of riskless debt is zero so, from Eq. (14), it must be

the case that the intermediary finds it optimal to offer riskless debt for any market size, including

in markets with at least nS investors. This contradicts the first part of Corollary 2, hence the

intermediary never finds it optimal to offer riskless debt.

3.3 The Equilibrium Market Structure

The results so far have characterized the security that an intermediary chooses to design, taking as

given the market structure. Our results revealed an important role for the relative market power

between investors and intermediaries. However, investors have a tool —their market choice —that

can affect this relative market power. Thus, to draw the stronger conclusion that a particular

security exists in equilibrium, we need to verify that the market structure in which it trades exists.

We address this question now.

To understand the incentives of investor i at date t = 0 when she chooses a market in which

to trade, we need to first evaluate her expected payoff E0
(
V i
m

)
from being in market m, given

a market structure M. The expression for E0
(
V i
m

)
is obtained by substituting the equilibrium

demand function Qim
(
pm; θi

)
from Eq. (12) and the equilibrium price pm from Eq. (13) into the

expression for V i
m in Eq. (5) then taking expectations at date t = 0, before the realization of θi is

known. This delivers investor i’s expected payoff as

E0
(
V i
m

)
=
σ2θ
2γ

nm − 1

nm

(
1− 1(

1 + λ−1m
)2
)

[E1 (Wm)]2

V1 (Wm)
+
γ

2

(
1 +

1

λ−1m

)2(
1− 1(

1 + λ−1m
)2
)
V1 (Wm) ,

which simplifies to

E0
(
V i
m

)
=
σ2θ
2γ

nm − 2

nm − 1

[E1 (Wm)]2

V1 (Wm)
+
γ

2

nm
nm − 2

V1 (Wm) (18)

after further substituting the index of market depth λ−1m = nm − 2.

The expected payoff at date t = 0 of an investor who will trade the security Wm at date t = 1

in a market with nm investors has two components. The first term in Eq. (18) is proportional

to the variance of investor preference shocks, σ2θ, and captures the gains from trade with other

investors. The larger σ2θ is, the more heterogeneous investors are in how they value the mean payoff

of the same security and the more they benefit from trading with each other, as reflected in more
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heterogenous equilibrium holdings of the securityWm. For smaller σ2θ, investors are more similar in

their valuation of the security and the equilibrium holdings of each investor approaches 1, which is

the per capita supply offered by the intermediary in market m. In this case, an investor’s payoff is

mainly driven by the risk premium that she commands as compensation for holding a risky security.

The second term in Eq. (18) captures the part of the investor’s expected payoff that comes from

this compensation for risk.

Lemma 1 Suppose the payoffs of the underlying asset Z satisfy z(k)−E1(Z|s≤k)√
V1(Z|s≤k)

<
√

2 + ε for all

k ∈ (0, S], where ε ≥ 0 is a scalar that (weakly) increases with µθ−β
γ . Then the compensation for

risk term nm
nm−2V1 (Wm) in the investor’s expected payoff E0

(
V i
m

)
is decreasing in nm when Wm is

evaluated at the optimal security in Proposition 2.

Both the gains from trade and the compensation for risk depend directly and indirectly on the

depth of the market in which the investor trades. For a given security Wm, the gains from trade

term in Eq. (18) increases directly with nm, both because the fundamental gains from trade, as

measured by nm−1
nm

σ2θ, are increasing in the number of market participants (even though the asset

supply scales up linearly with the size of the market) and because the price impact of an investor

is smaller in a larger market. In contrast, the compensation for risk term decreases directly with

nm because the investor’s price impact falls with the size of the market. At the same time, the

security that intermediary m finds optimal to offer in Proposition 2 changes with nm, indirectly

affecting both terms in Eq. (18) through Wm. The compensation for risk term is dominated by the

direct effect of the market size nm when the payoffs of the underlying asset Z satisfy the condition

in Lemma 1. Intuitively, the condition requires the realizations of Z to be suffi ciently variable. We

carry this condition through the rest of the analysis.

There can be a wide variety of market structures whose stability may be interesting to explore.

When organized on a spectrum, most market structures can be classified as either more fragmented

or more centralized in nature. Fragmentation is most severe when all intermediaries are active and

investors are equally divided across them. Centralization is most severe when only one intermediary

is active and all investors trade in a single market. We explore conditions under which these two

benchmark cases emerge as the unique equilibrium market structure to get insight into the forces

that drive investors’market choice.
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3.3.1 Symmetric Fragmented Markets

With a discrete number of investors and intermediaries, a symmetric market structure in which

each active market contains exactly n investors may not exist for every value of n ∈ N+. We there-

fore extend the definition of a symmetric market structure to allow for a distribution of investors

across markets such that there are n investors in some markets and (n+ 1) investors in others.

Mathematically, a generalized symmetric market structure M is characterized by the number of

active markets, M1 + M2 ≤ M with M1 ∈ N+ and M2 ∈ N0, and by the number of investors in

each market, n or (n+ 1), where

M1 × n+M2 × (n+ 1) = N, (19)

with n ∈ [3, N ]∩N+. If all intermediaries are active, i.e.,M1+M2 = M , then Eq. (19) implies that

M1 intermediaries are each getting
⌊
N
M

⌋
investors and M2 intermediaries are each getting

⌊
N
M

⌋
+ 1

investors, where the notation bXc means X is rounded down to the nearest integer. Throughout,

we assume N and M such that
⌊
N
M

⌋
≥ 3.

The following proposition establishes that small σ2θ is suffi cient for the existence and uniqueness

of a symmetric equilibrium where securities are traded in fragmented markets:

Proposition 4 There exists σ > 0 such that, for any σ2θ ≤ σ, the market structure in which

all intermediaries are active is the unique `-stable generalized symmetric market structure for any

` ≥ 3.

The intuition for Proposition 4 is as follows. When σ2θ ≤ σ, the investor’s expected payoff

E0
(
V i
m

)
is driven by the compensation for risk term, nm

nm−2V1 (Wm), which by Lemma 1 is decreasing

in the size of the investor’s local market. Thus, investors will seek to trade in the smallest possible

markets. At least three investors are necessary in a market for there to exist a linear equilibrium

with trade when investor preference shocks are independent; see also Wilson (1979) and Kyle

(1989). When investors can jointly deviate in groups of three or more (` ≥ 3), they will distribute

themselves across all financial intermediaries. It may appear that fragmented markets can only

ever have three investors per market. This need not be the case because the number of available

intermediaries is what pins down the size of each market when investors want to trade in the

smallest possible markets. In particular, the smallest possible market will have more than three

investors if M is small enough that
⌊
N
M

⌋
> 3. While it is beyond the scope of the paper to model
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intermediary entry, we note here that varying the number of intermediaries will change the size of

each market and hence the degree of market fragmentation.

By influencing which market structures can be supported in equilibrium, the variance of investor

preference shocks, σ2θ, also affects which securities are designed in equilibrium. When σ
2
θ is small,

investors will not differ much in their valuations of the same security. The gains from trade are

therefore low and investors anticipate that they will trade little with each other. Given this, they

are willing to trade in smaller markets, where they can use their larger price impact to obtain from

intermediaries a less variable security, as per Proposition 2. While the larger price impact also hurts

the investor when she trades the security with other investors in the same market, this concern is

muted because she anticipates trading little with other investors. Thus, debt securities are traded

in fragmented markets. The following corollary formalizes these implications:

Corollary 3 In the symmetric equilibrium of Proposition 4, all intermediaries offer a debt security

if
⌊
N
M

⌋
+ 1 < nS. They instead sell everything, i.e., offer equity, if

⌊
N
M

⌋
≥ nS.

Corollary 3 shows that as the degree of market fragmentation changes, so does the security

that is offered in equilibrium. Recall that when σ2θ is low the degree of market fragmentation is

pinned down by the total number of intermediaries since there is a unique market structure that is

`-stable for any given numberM . Thus, the equilibrium securityWm need not be the one associated

with nm = 3 in Proposition 2. As the number of intermediaries decreases, the degree of market

fragmentation decreases and the security can change from low-variance debt to high-variance debt

or even equity.

The discussion so far has focused on market stability for any ` ≥ 3. When only unilateral or

bilateral deviations of investors are allowed, i.e. ` ∈ {1, 2}, there can be multiple market structures

that are stable for a given number of intermediaries M . Without the ability to coordinate in larger

groups, an investor remains isolated if she joins an inactive market m with nm < 2. If an investor

were to deviate to such a market she would not trade and therefore receives a payoff of zero. Thus,

while the investor’s expected payoff is still decreasing in the size of her local market, she no longer

benefits from exiting her market and joining the market of an inactive intermediary. In this case,

the symmetric market structure with M active intermediaries in Proposition 4 is only one of many

possible equilibria; any symmetric market structure with fewer thanM active intermediaries is also

an `-stable market structure when ` ∈ {1, 2} and σ2θ ≤ σ.
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3.3.2 Fully Centralized Market

We now establish conditions under which a highly centralized market structure can be supported

in equilibrium.

Proposition 5 Suppose the distribution function F (·) for the state s ∈ [0, S] is such that the

investor’s expected payoff E0
(
V i
m

)
evaluated at the optimal security in Proposition 2 has at most

one critical point over the range n ≥
⌊
N
M

⌋
, where

⌊
N
M

⌋
< nS ∈ (3,∞). Then the unique `-stable

equilibrium for ` = N has all investors trading in one market if and only if both σ2θ and
E1(Z)√
V1(Z)

are

suffi ciently large.

An example of a distribution that delivers an investor value function with at most one critical

point is F (s) = s
S with S within some bounds, i.e., a (moderately disperse) uniform distribution.12

Proposition 5 reinforces that the variance of investor preference shocks, σ2θ, helps determine

which market structures — and thus which securities — can be supported in equilibrium. The

intuition for σ2θ small was discussed in Section 3.3.1. When σ
2
θ is instead large, the gains from

trade are also large. Investors understand that they may want to make large trades with each

other in order to reap these gains, hence they seek to minimize their price impact by trading in

a large market, albeit with a riskier security, provided this security is not too bad, i.e., E1(Z)√
V1(Z)

suffi ciently high. Proposition 5 focuses on ` = N , which allows all investors to coordinate. An

alternative interpretation is that any inactive intermediary can seek out investors to form a new

market, or any active intermediary can seek out investors to form a larger market. This form of

“poaching”by intermediaries achieves the same allocations as cross-market coalitions of investors

without requiring that investors themselves coordinate. Either way, ` = N allows investors to

pursue any profitable deviations if they exist. Equity securities are then traded in a centralized

market under the conditions in Proposition 5.

3.3.3 The Importance of Endogenous Market Structure

The interplay between endogenous security design and endogenous market structure determines

which securities will exist in equilibrium given a set of structural parameters (e.g., µθ, σ
2
θ, the

properties of the underlying asset Z, etc.). The following thought experiment demonstrates why

allowing investors to choose a market structure plays an important role. Suppose markets are

exogenously fragmented. In Proposition 2, we showed that investors will have the market power to
12See the end of the proof of Proposition 5 for an analysis of this example.
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elicit debt securities from intermediaries. The trading of debt securities in fragmented markets will

then always be observed if investors do not have the option to choose the market structure in which

they trade. However, we know from the discussion of the investor value function that investors will

want to trade in a single market in order to lessen their price impact when the variance of their

preference shocks, σ2θ, is suffi ciently large. In a single market, though, the market power shifts

to the intermediary, who then delivers a pass-through security, not a debt security. Whether a

debt security is actually observed in equilibrium thus depends on what market structure investors

want to trade in when they understand that security design is endogenous. Predictions about the

equilibrium security therefore require a characterization of the equilibrium market structure.

To better appreciate how endogenizing the market structure changes the securities that prevail

for a given set of structural parameters, we return to the investor’s expected payoff and deconstruct

it in more detail. Consider specifically Eq. (18), which represents investor i’s expected profit when

Eq. (5) is evaluated at both the equilibrium demand function Qim
(
pm; θi

)
and the equilibrium

price pm derived in Proposition 1. Given a market depth λ−1m , Eq. (18) implies that, among all

securities with the same mean payoff E1 (Wm), an investor i would be better off with the security

with the least variance V1 (Wm) if she expects investors to have very disperse valuations. In other

words, investor i would be better off with debt if σ2θ is high but equity if σ
2
θ is low, for a fixed

market structure.

The endogeneity of market depth and its effect on security design reverses this ordering. A

key feature of the equilibrium in our model is that investors take into account that their market

choice affects market depth and hence the payoffs of the securities that intermediaries design.

Thus, an investor’s expected profit in Eq. (18) depends on the depth of the market both directly

and indirectly, with the indirect effect coming through the equilibrium security Wm derived in

Proposition 2. The two terms in Eq. (18) —the gains from trade term and the compensation for

risk term —can move in opposite directions as the market becomes deeper; see the proof of Lemma

1 for a formalization. Thus, consistent with Proposition 5 and its discussion, investors will prefer

equity if σ2θ is high but debt if σ
2
θ is low. This constitutes a reversal in the securities that make

investors better off (as a function of the expected dispersion in their valuations) relative to the case

where investors only take into account the price impact of their trades for a given market depth.

It is important to notice that investors’preferences shape the payoffs of the security traded

in equilibrium both directly and indirectly. First, because the expected price at which a security

Wm trades is increasing in the mean µθ of the investor preference shocks, µθ directly enters the
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optimization problem of intermediary m and thus directly affects the payoffs of the security that he

finds optimal to design. Second, although the variance of the investor preference shocks does not

appear directly in the payoffs of the security derived in Proposition 2, σ2θ plays an important role

in determining which securities are traded in equilibrium. The payoffs of the equilibrium security

in market m depend directly on the number of investors nm, and σ2θ affects an investor’s decision

about which market to trade in. Thus, as we discussed above, when σ2θ is high, investors value

trading in deeper markets, which induces the intermediary to offer riskier securities, while, when

σ2θ is low, investors prefer trading in thinner markets, which induces the intermediary to offer less

variable securities.

4 Discussion

Investment banks perform three functions which may be of value to an issuer of new securities:

designing the security, underwriting, and distributing the security to investors (Baron (1982)). A

substantial body of research over the past few decades has contributed to understanding the security

design problem. However, the interaction between design and distribution remains understudied,

despite being at the forefront of the security issuance process in practice. Consider, for example,

a negotiated issuance of municipal bonds, as described in industry materials.13 The underwriter

advertises a tentative security to investors, before the terms of the security have been fully set.

Depending on the incoming flow of orders, the underwriter may recommend changes in the structure

and payoffs of the security to the issuer. The underwriter then allocates the bonds to investors,

once the terms of the security have been finalized. A similar process exists for negotiated issuances

of other types of securities.

Our model sheds light on the strategic interactions that can arise in this process to shape the

security that ultimately comes to market. The key mechanism behind our theoretical predictions

is that security design is shaped by the market power that investors have relative to the financial

intermediary in local markets. This mechanism gives rise to an equilibrium association between

market depth and security design that is robust to several alternative formulations of our environ-

ment, as we show in Online Appendix B.14 Furthermore, there is emerging empirical evidence that

13E.g., “The Municipal Underwriting Process”by the investment bank Piper Jaffray in 2005.
14Specifically, we consider the following extensions in Online Appendix B: allowing the intermediary to choose

how many units of the underlying asset back each unit of the security designed for investors; allowing investors to
choose markets after securities are designed; allowing investors to choose more than one market in which to trade;
and allowing more than one security to be designed for investors in each market.
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supports the mechanism behind our results. When investors trade in thin markets, they have more

market power relative to the intermediary. In this case, investors use their market power to obtain

a security that is most favorable to them, as in Adelino, Frame, and Gerardi (2017). In contrast,

when investors trade in a deep market, the intermediary uses its relatively superior market power

to design a security that is more favorable to it, as in Brancaccio and Kang (2022).

By shedding light on the interaction between security design and market structure, our paper can

contribute to an important agenda that studies the relationship between asset safety and liquidity.

While it is often assumed that safer securities are at least as liquid as riskier ones, in practice

the relationship between safety and liquidity is complex. For instance, Friewald, Jankowitsch,

and Subrahmanyam (2017) find that mortgage-backed securities are more liquid than collateralized

mortgage obligations despite being pass-through securities, with only part of the liquidity difference

attributable to differences in government guarantees. As another example, in well-known work on

U.S. Treasuries, Krishnamurthy and Vissing-Jorgensen (2012) identify the safety premium assuming

that Aaa and Baa corporate bonds are equally liquid. More recently, however, Geromichalos,

Herrenbrueck, and Lee (2022) demonstrate that certain assets may carry different liquidity premia

precisely because they have different risks.

Our model allows us to highlight the importance of the underlying asset for interpreting safety

versus liquidity premia. We accomplish this by undertaking two exercises. First, we consider an

extension of the model that allows the co-existence of securities with different safety profiles issued

on the same underlying asset. Second, we discuss how changes in the riskiness of the underlying

asset affect the relationship between market liquidity and the riskiness of the asset-backed security

designed by the intermediary. All supporting derivations are collected in Online Appendix C.

4.1 Liquidity and Safety for a Common Underlying Asset

To draw implications about the relationship between safety and liquidity through the lens of our

model, we need to be able to compare different security profiles backed by the same underlying

asset. Our characterization of equilibrium has so far focused on the stability of either symmetric

fragmented markets (Section 3.3.1) or a single centralized market (Section 3.3.2), leading to one

security profile being issued in each equilibrium. Thus, we now need to shift our attention to the

existence of asymmetric equilibria in which markets of different size co-exist. Such equilibria ensure

the co-existence of securities with different safety profiles that are backed by the same underlying

asset.
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Asymmetric equilibria that are `-stable under Definition 1 exist for ` = N if the investor value

function achieves a global maximum at more than one point or if there is a restriction on the total

number of intermediaries in the economy.15 Alternatively, one can consider restrictions on only

the number of intermediaries that a given investor can interact with, instead of restricting the

total number of intermediaries in the economy. In particular, suppose that every investor has pre-

existing relationships with a subset of intermediaries formed from interactions outside the model.

Intermediaries are heterogeneous in the number of investors they have relationships with, with some

intermediaries having more and others having less. As in our main set-up, each investor chooses an

intermediary in whose market to trade from the subset of intermediaries that she has a relationship

with. Lemma C.1 in Online Appendix C establishes that this setting with pre-existing relationships

supports asymmetric equilibria where debt and equity co-exist. That is, large markets in which

investors trade more variable securities co-exist with small markets in which investors trade less

variable securities.

Market size in our model aligns closely to a natural measure of liquidity captured by the price

impact of an individual investor. Recall from Section 3.1 that the price impact of investor i in

market m is ∂pm,−i/∂qim = λmγV1 (Wm), where λ−1m ≡ (nm − 2) and, in equilibrium, Wm depends

on nm as demonstrated in Proposition 2. Under the conditions stated in Lemma 1, the total

derivative of ∂pm,−i/∂qim with respect to nm is negative. Since a market is liquid if the security

can be traded with little impact on its price, a larger market in our model is also a more liquid

market.16

Thus, our model implies that a safer security with less variable payoffs will be less liquid than a

riskier security with more variable payoffs when both securities are backed by the same underlying

asset. This prediction suggests that factors other than market power are at play if riskier securities

are observed to be less liquid than safer securities in such environments. For instance, a riskier

security may be more customized to fit the needs of specialized investors, as in Brancaccio and Kang

(2022). Alternatively, a safer security may have an associated priority structure that enhances its
15Consider, for illustration, an investor value function EV (n) that achieves its global maximum uniquely at some

market size n∗. An asymmetric equilibrium with nA ∈ (n∗, N − n∗) investors in one market and nB = N − nA
investors in another market is possible if the total number of intermediaries is restricted to M = 2.
16At this stage it is worth noting that primary and secondary markets are one and the same in our model. We

believe this to be a reasonable simplification. While in practice we distinguish between trade in primary and secondary
markets, these markets are typically tightly linked. In particular, a more liquid secondary market makes the primary
market more liquid as well. It would follow from our model that an individual investor has limited price impact
against the intermediary in a liquid primary market. Hence, the intermediary can design a more variable security
and investors will accept it (i.e., they will not leave the primary market) because the security can be re-traded in
a liquid secondary market after the realization of preference shocks. In this way, liquidity of the secondary market
supports liquidity of the primary market.
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liquidity, as is the case with more senior tranches in structured securitization (Friewald, Hennessy,

and Jankowitsch (2016)).

4.2 Liquidity and Safety for Different Underlying Assets

In practice, many of the securities we observe are not backed by the same underlying asset. We now

explore how differences in the riskiness of the underlying asset Z affect the relationship between

market liquidity and the riskiness of the asset-backed security designed by the intermediary in our

model.

To fix ideas, consider the specification z (s) = κs for the payoffs of the underlying asset Z,

where s ∈ [0, 1] is uniformly distributed. Notice that κ affects both the mean and the variance

of the underlying asset Z. Specifically, the higher is κ, the higher are both the mean E1 (Z) and

variance V1 (Z) of Z. However, by keeping the ratio E1(Z)√
V1(Z)

independent of κ we control for the

quality, i.e., the expected payoff per unit of risk, of the underlying asset.

We modify our main set-up to allow for a subset M ′ of intermediaries to have access to an

underlying asset characterized by κ′ while the remaining subset of intermediaries, M ′′ ≡M −M ′,

have access to an underlying asset characterized by κ′′ > κ′. An intermediary who uses the

underlying asset κ′′ will design an asset-backed security with a higher variance than an intermediary

who uses the underlying asset κ′ when both face markets of the same size.17 However, as investors

choose a market in which to trade, markets of different sizes can co-exist in equilibrium. As we show

in Online Appendix C, an asymmetric market structure in which each of the M ′ intermediaries

has nm′ investors and each of the M ′′ intermediaries has nm′′ investors, with nm′ < nm′′ and

N = M ′ × nm′ + M ′′ × nm′′ , can be supported in equilibrium. Thus, a safer security with less

variable payoffs can be less liquid than a riskier security with more variable payoffs, even when

intermediaries differ in the underlying assets they use, provided investors can choose freely between

the different intermediaries.

In reality, though, not all investors are unconstrained when choosing a market in which to trade.

As we argued above, investors often have long-term relationships with a handful of intermediaries.

Alternatively, some investors may be subject to regulation that allows them to participate only

in certain markets. To capture this in our model, we consider that a subset N ′ of investors are

restricted to have relationships only with the M ′ intermediaries who have access to the underlying

17 Intuitively, flattening out the payoff profile of the security to overcome the higher variability of the underlying
asset would involve too steep a drop in the mean payoff of the security (and thus its price) to be profitable for the
intermediary.
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asset characterized by κ′ while the remaining subset of investors, N ′′ ≡ N − N ′, can choose to

trade in any market, including those associated with intermediaries M ′′ who have access to the

underlying asset characterized by κ′′. We explore this environment in Online Appendix C and

demonstrate that a safer security with less variable payoffs can be more liquid, not less liquid, than

a riskier security with more variable payoffs.

The examples in this section highlight the complexity of the relationship between the safety and

the liquidity of a security and suggest that one needs to cautiously disentangle the various factors

that contribute to patterns documented empirically.

5 Aggregate Welfare

We now study aggregate welfare in the model, taking into account the expected payoffs of both

investors and intermediaries, to better understand the potential tradeoffs that a social planner

would face when designing policy.

We consider equilibrium market structures with M1 intermediaries each getting n investors and

M2 intermediaries each getting (n+ 1) investors, such that Eq. (19) is satisfied. In each active

market, an investor obtains an expected profit E0
(
V i
m

)
given by Eq. (18), while the intermediary

receives an expected profit E0 (Vm) given by Eq. (14). Aggregate welfare can then be defined as

W = n×M1 × E0
(
V i
m|nm=n

)
+ (n+ 1)×M2 × E0

(
V i
m|nm=n+1

)
+M1 × E0 (Vm|nm=n) +M2 × E0 (Vm|nm=n+1) .

The following proposition characterizes the dependence of aggregate welfare on market depth for a

given specification of the payoffs of the underlying asset Z.

Proposition 6 Consider z (s) = z (0)+κs and s ∈ [0, S] uniformly distributed according to F (s) =

s
S . Also suppose N > nS with nS ∈ [3,∞). It follows that:

1. An active intermediary’s expected profit E0 (Vm) in Eq. (14) is increasing in nm when Wm is

the equilibrium security derived in Proposition 2.

2. If z (0) is not too large, then for any value of σ2θ, the equilibrium in which all investors trade in

a single market and the intermediary sells everything (i.e., offers equity) achieves the highest

aggregate welfare.
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The first part of Proposition 6 says that an intermediary is always better off designing a security

for a large market than for a small market. Investors have less price impact in large markets, so

the intermediary is able to command a higher price for whatever security he designs. Recall from

Propositions 4 and 5 that an investor will be worse off in a large market than in a small market

when σ2θ is suffi ciently low. Therefore, investors benefit at the expense of intermediaries in any

equilibrium where debt is traded.

The second part of Proposition 6 says that the benefits to investors of an equilibrium in which

intermediaries offer debt are outweighed by the losses to intermediaries, at least in environments

where it is impossible to design a security that has high returns in all states of the world (i.e.,

environments where z (0) is low). First, the expected, per-capita profit of an active intermediary

increases more quickly with nm than the expected profit of an investor may decrease with nm.

Second, the non-linear relationship between market size and the price impact of investors means

that total welfare across intermediaries is maximized when there is only one active intermediary.

The results in the second part of Proposition 6 characterize the solution to the problem of a

social planner who chooses a market structure, a set of securities, and a set of demand functions to

maximize aggregate welfare subject to the equilibrium conditions in the first and second bullets of

Definition 1. We can then draw two conclusions from the results on equilibrium market structure in

Section 3.3. First, if investors choose market structure as per the third bullet of Definition 1 with

` = 1, i.e., only unilateral deviations must be ruled out, there will be a decentralized equilibrium

that coincides with the planner’s solution. All investors trading in one market is a stable market

structure whenever investors consider only unilateral deviations, hence we can interpret the second

part of Proposition 6 as saying that the planner will open a single market if constrained to choose

among solutions that arise as a decentralized equilibrium in Definition 1 with ` = 1. Second,

if investors choose market structure as per the third bullet of Definition 1 with ` = N , i.e., all

unilateral and multilateral deviations must be ruled out, the decentralized equilibrium will only

coincide with the planner’s solution when both σ2θ and
E1(Z)√
V1(Z)

are large enough (Proposition 5).

What would the planner do if not constrained to choose among solutions that arise as a de-

centralized equilibrium in Definition 1? It is straightforward to show that he would open a single

market in which all investors trade a zero-variance security (i.e., riskless debt).18 Intuitively, a

18We omit the proof for brevity. It is simply welfare maximization by a planner who: (i) opens M1 markets each
with n investors and M2 markets each with n + 1 investors such that Eq. (19) holds; (ii) designs a security Wm

subject only to the feasibility condition (2); (iii) allocates to investor i in market m a quantity qim of the security Wm

after the realization of investor preference shocks, where
∑
i∈m q

i
m = nm for each market m; and (iv) allocates to the

intermediary in each market m a quantity nm of the security (Z −Wm).

31



security with zero variance neutralizes the risk aversion of investors. Maximum aggregate welfare

can then be achieved by allocating unboundedly positive positions qim to investors whose realization

of θi exceeds the market average and unboundedly negative positions to the rest to satisfy market

clearing,
∑

i∈N q
i
m = N . If the planner is restricted to design a positive-variance security, then he

will open a single market in which investors take large but finite positions on the closest possible

security to riskless debt. Key here is that the planner can achieve higher welfare by decoupling the

security design choice from the market structure choice: he would like to design a debt security for

risk averse investors and he would like all investors to trade this security in the same market in

order to maximize the gains from trade.

The problem is that security design cannot be decoupled from market structure in equilibrium.

This result is at the heart of our paper. Intermediaries respond to market-based incentives when

designing a security for investors to trade. These incentives come from the price of the security,

which is endogenously less sensitive to investors’risk aversion in a large market because the price

impact of an individual investor is decreasing in market size. Policy interventions that overlook

the implications of market structure for security design can lead to unintended consequences; see

Babus and Hachem (2021) for one application.

6 Conclusion

This paper has developed a tractable model of financial innovation to address a critical question:

what is the relationship between the types of securities offered and the market structures in which

they trade? A central finding of our paper is that financial intermediaries design progressively riskier

securities when facing deeper, less fragmented markets in which investors trade more competitively.

Market fragmentation thus plays an important role in the creation of safer securities.

The methodological novelty in our paper is that both security design and market structure

are endogenously determined. This is important, as it ensures the securities created for a given

market structure are indeed supported in equilibrium. Financial intermediaries design asset-backed

securities taking into account investors’ demand in the markets in which the securities will be

traded. Investors choose markets understanding that their choices will affect market depth and

thus the design of the securities that will be available for trade.

When choosing how to design a security, an intermediary’s main incentive is to obtain a high

price for it. As usual, the equilibrium price at which the security is traded is increasing in its mean
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payoff and decreasing in the variance of its payoffs across states. The intermediary thus faces a

trade-off between the mean and the variance of the security he designs, making a debt contract the

optimal one. Importantly, we show that the equilibrium price decreases less with the variance of

the security in deeper markets where investors have a lower price impact. Thus, the strength of the

mean-variance trade-off faced by the intermediary depends on the depth of the market. The deeper

the market, the less pronounced the trade-off and the higher the face value of the debt contract

offered.

When choosing a market in which to trade, an investor weighs the gains from trade with other

investors against the ability to influence the security that the financial intermediary designs. An

investor who trades in a thinner, more fragmented market will have a larger price impact. On one

hand, this amplifies the mean-variance trade-off in the intermediary’s security design problem and

delivers a less risky security. On the other hand, it also amplifies the extent to which the investor

will move the price of the security against herself when trading with other investors.

In Dugast, Üslü, and Weill (2022), investors’types play a key role in determining the market

structure in which trade occurs. In our model, investors’preferences affect the security that will be

traded, both directly through the payoffs that an intermediary offers for a given market structure

and indirectly through the market structure that prevails as an equilibrium. When investors expect

to be relatively heterogeneous in their valuations of the same security, they understand that they

may want to engage in large trades with each other so they seek to limit their price impact by

trading in a large market, albeit with a riskier security. In contrast, when investors expect to be

relatively homogeneous in their valuations, they anticipate trading little with each other and are

thus willing to accept a larger price impact in thinner, more fragmented markets in order to elicit

less variable securities from financial intermediaries.

A key prediction of our model is that less variable asset-backed securities are traded in thinner,

more fragmented markets while more variable asset-backed securities are traded in deeper, less

fragmented markets when securities are backed by the same underlying asset and every investor

can freely choose a market in which to trade. However, if intermediaries differ in their underlying

assets and investors face constraints on their market choice, then less variable securities may trade

in deeper markets while more variable securities trade in thinner markets. Having developed a

parsimonious framework at the intersection of market structure and security design, our model

provides a platform on which many extensions can be considered and offers fruitful avenues for

future work.
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Appendix A —Proofs

Proof of Proposition 1

Rearrange the first order condition of investor i in Eq. (10) to isolate:

qim =
θiE1 (Wm)− pm
∂pm,−i
∂qim

+ γV1 (Wm)
(A.1)

for any i ∈ m. Use this expression to substitute out Qjm (·) from Eq. (11) for all investors j 6= i in

market m:

qim +
∑

j∈m,j 6=i

θjE1 (Wm)− pm
∂pm,−j
∂qjm

+ γV1 (Wm)
= nm (A.2)

We focus on symmetric linear equilibria in which the price impact ∂pm,−j
∂qjm

does not vary across

investors within the same market. This permits rearranging Eq. (A.2) to isolate:

pm =

∑
j∈m,j 6=i

θj

nm − 1
E1 (Wm)− nm − qim

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)

which then implies:
∂pm,−i
∂qim

=
1

nm − 1

(
∂pm,−j

∂qjm
+ γV1 (Wm)

)
Invoking symmetry (∂pm,−i

∂qim
=

∂pm,−j
∂qjm

), we obtain:

∂pm,−i
∂qim

= λmγV1 (Wm) (A.3)

where λm ≡ 1
nm−2 . Substituting Eq. (A.3) into Eq. (A.1) delivers the equilibrium demand function

Qim
(
pm; θi

)
in Eq. (12). Substituting Eq. (12) into the market clearing condition

∑
i∈m

Qim
(
pm; θi

)
=

nm then delivers the equilibrium price pm in Eq. (13). �

Proof of Proposition 2

Intermediary m designs a security Wm to maximize his expected payoff in Eq. (8), subject to the

state-by-state feasibility constraint (2).

Letting υ (s) ≥ 0 denote the Lagrange multiplier on the feasibility constraint for state s, we can
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write the Lagrangian for intermediary m’s optimization problem as:

Lm = E0 (Vm) +

∫ S

0
υ (s) [z (s)− wm (s)] dF (s)

or, equivalently:

Lm = βE1 (Z)nm + (µθ − β)nm

∫ S

0
wm (s) dF (s)

−γnm (nm − 1)

nm − 2

[∫ S

0
(wm (s))2 dF (s)−

(∫ S

0
wm (s) dF (s)

)2]

+

∫ S

0
υ (s) [z (s)− wm (s)] dF (s)

where the intermediary is choosing wm (s) for each state s ∈ [0, S] taking as given the market size

nm. We restrict attention to nm ≥ 3 so that the trading equilibrium in Proposition 1 involves a

well-defined equilibrium price for market m.

The first order condition with respect to wm (s) delivers:

υ (s)
sign
= E1 (Wm) +

µθ − β
2γ

nm − 2

nm − 1
− wm (s) (A.4)

where υ (s) ≥ 0 and wm (s) ≤ z (s) hold with complementary slackness.

If υ (s) > 0, then:

wm (s) = z (s)

and, invoking (A.4), we need:

z (s) < E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1

to confirm υ (s) > 0.

If υ (s) = 0, then (A.4) pins down:

wm (s) = E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1

and we need:

z (s) ≥ E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1
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to confirm wm (s) ≤ z (s).

The payoffs of the equilibrium security are therefore:

wm (s) =

 z (s) if z (s) < E1 (Wm) + µθ−β
2γ

nm−2
nm−1

E1 (Wm) + µθ−β
2γ

nm−2
nm−1 if z (s) ≥ E1 (Wm) + µθ−β

2γ
nm−2
nm−1

Suppose there exists an sm ∈ (0, S) solving:

z (sm) ≡ E1 (Wm) +
µθ − β

2γ

nm − 2

nm − 1
(A.5)

Then z′ (·) > 0 implies:

E1 (Wm) =

∫ sm

0
z (s) dF (s) +

∫ S

sm

z (sm) dF (s) (A.6)

and we can rewrite Eq. (A.5) as:

∫ sm

0
[z (sm)− z (s)] dF (s) ≡ µθ − β

2γ

nm − 2

nm − 1
(A.7)

The left-hand side of Eq. (A.7) is increasing in sm so there will be a unique solution sm ∈ (0, S) if

and only if:

z (S)− E1 (Z) >
µθ − β

2γ

nm − 2

nm − 1
(A.8)

The ratio nm−2
nm−1 is increasing in nm and asymptotes to 1 as nm →∞.

If the parameters satisfy z (S) − E1 (Z) ∈
[
µθ−β
4γ , µθ−β2γ

)
, then Eq. (17) has a unique solution

nS ∈ [3,∞). For any nm ∈ [3, nS), condition (A.8) holds and the equilibrium security is given by

Eq. (15) with sm as defined in Eq. (A.5). For any nm ∈ [nS ,∞), condition (A.8) does not hold,

meaning that there is no sm ∈ (0, S) solving Eq. (A.5). The equilibrium security is still given by

Eq. (15) but with sm = S instead of Eq. (A.5).

If the parameters satisfy z (S)−E1 (Z) ≥ µθ−β
2γ , then condition (A.8) is true for any nm ∈ [3,∞).

The equilibrium security is thus given by Eq. (15) with sm as defined in Eq. (A.5). Condition

(A.8) being true for any nm ∈ [3,∞) means that there is no solution nS ∈ [3,∞) to Eq. (17).

Assigning nS =∞ here recovers Eq. (A.5) from Eq. (16) for any nm ≥ 3.

If the parameters satisfy z (S)−E1 (Z) < µθ−β
4γ , then condition (A.8) is false for any nm ∈ [3,∞).

The equilibrium security is thus given by Eq. (15) with sm = S for all nm ∈ [3,∞). Assigning
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nS = −∞ here recovers sm = S from Eq. (16) for any nm ≥ 3.

We have now shown that the solution to the intermediary’s F.O.C.s belongs to the family of

debt securities: Wm pays the entirety of the underlying asset Z up to some threshold state sm, after

which it pays a flat amount that does not vary with the state. A perturbation argument similar

to Hébert (2018) can be used to confirm the optimality of debt securities in our environment. We

sketch this argument in the main text (see the paragraph that follows Figure 1) so do not reproduce

it here. Instead, we confirm that sm as defined by Eq. (A.7) satisfies the S.O.C. for a maximum in

an auxiliary problem where the intermediary chooses a threshold state s̃m to maximize his expected

profit within the family of debt securities.

The objective function for this auxiliary problem is:

L(A)m = (µθ − β)

[
z (s̃m)−

∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

]

−γnm − 1

nm − 2

∫ s̃m

0
[z (s̃m)− z (s)]2 dF (s)−

(∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

)2
The first derivative with respect to s̃m is:

∂L(A)m

∂s̃m
=

[
µθ − β − 2γ

nm − 1

nm − 2

∫ s̃m

0
[z (s̃m)− z (s)] dF (s)

]
[1− F (s̃m)] z′ (s̃m)

If nm < nS , then Eq. (A.7) has a unique interior solution sm ∈ (0, S), which is also the unique

interior solution to ∂L(A)m
∂s̃m

= 0. The second derivative evaluated at this solution is:

∂2L(A)m

∂s̃2m

∣∣∣∣∣
s̃m=sm

= −2γ
nm − 1

nm − 2

(
z′ (sm)

)2
F (sm) [1− F (sm)] < 0

where the inequality follows from sm ∈ (0, S). Eq. (A.7) thus defines a local maximum and, since

there are no local minima, the local maximum is also the global maximum.

If nm > nS , then there is no solution sm < S to Eq. (A.7). The only solution to ∂L(A)m
∂s̃m

= 0 is

therefore s̃m = S, in which case the second derivative is:

∂2L(A)m

∂s̃2m

∣∣∣∣∣
s̃m=S

= −
[
µθ − β − 2γ

nm − 1

nm − 2
[z (S)− E1 (Z)]

]
f (S) z′ (S)

This is negative if and only if nm−2nm−1 >
2γ

µθ−β
[z (S)− E1 (Z)] or, equivalently, nm > nS .
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Notice that Eq. (A.7) is only defined if µθ > β. We now demonstrate that µθ > β is necessary

and suffi cient for the intermediary’s participation constraint to be satisfied. The participation

constraint requires that the intermediary’s maximized expected profit, as given by E0 (Vm) in Eq.

(8) when evaluated at the equilibrium security, must be at least as large as βE1 (Z)×nm, which is

what the intermediary could get by consuming nm units of Z at date t = 2 instead of using these

units to design the security for market m.

If nm ≥ nS , then the intermediary’s maximization problem yieldsWm = Z and the participation

constraint simplifies to:

(µθ − β)E1 (Z) ≥ γnm − 1

nm − 2
V1 (Z) (A.9)

Assume µθ > β so that the left-hand side of (A.9) is positive. The right hand side of (A.9) is

decreasing in nm so (A.9) will hold for all nm ≥ nS if it holds for nm = nS . Evaluating (A.9) at

the definition of nS in Eq. (17), we get:

2z (S)E1 (Z) ≥ E
(
Z2
)

+ (E1 (Z))2

which is true because Z has the property z′ (·) > 0.

If nm < nS , then sm ∈ (0, S) is defined by Eq. (A.7). The participation constraint requires:

(µθ − β)E1 (Wm) ≥ γnm − 1

nm − 2
V1 (Wm) (A.10)

where E1 (Wm) is given by Eq. (A.6) and:

V1 (Wm) =

∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2
(A.11)

Use Eq. (A.7) to rewrite (A.10) as:

2E1 (Wm)

∫ sm

0
[z (sm)− z (s)] dF (s) ≥ V1 (Wm)

then substitute in for E1 (Wm) and V1 (Wm) to get:

2z (sm)
1

F (sm)

∫ sm

0
z (s) dF (s) +

(
1

F (sm)
− 1

)[
(z (sm))2 − 1

F (sm)

∫ sm

0
(z (s))2 dF (s)

]
≥ 1

F (sm)

∫ sm

0
(z (s))2 dF (s) +

(
1

F (sm)

∫ sm

0
z (s) dF (s)

)2
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which is again true because of z′ (·) > 0. �

Proof of Proposition 3

For any nm < nS , Eq. (16) simplifies to Eq. (A.7) from the proof of Proposition 2. Differentiating

Eq. (A.7) yields:
dsm
dnm

=
µθ − β

2γ

1

(nm − 1)2
1

z′ (sm)F (sm)
> 0

Therefore, dsmdnm
> 0 for any nm ∈ [3, nS) and lim

nm→n−S

dsm
dnm

> 0.

A corollary is that the same properties hold for the mean and variance of the equilibrium

security. To see why, differentiate Eq. (A.6) and (A.11) to get:

dE1 (Wm)

dsm
= z′ (sm) [1− F (sm)]

and:
dV1 (Wm)

dsm
= 2z′ (sm) [1− F (sm)]

∫ sm

0
[z (sm)− z (s)] dF (s)

Both of these derivatives are strictly positive because nm < nS implies sm ∈ (0, S). It then follows

immediately that E1 (Wm) and V1 (Wm) increase with nm as sm increases with nm, up until the

point where nm = nS . �

Proof of Lemma 1

Write nV1(W (n))
n−2 to make explicit that we are evaluating V1 (·) at the equilibrium security derived

in Proposition 2, denoted here by W (n) to make explicit its dependence on the market size n.

Taking derivatives:

d

dn

(
nV1 (W (n))

n− 2

)
= −2V1 (W (n))

(n− 2)2
+

n

n− 2

dV1 (W (n))

dn

If n ≥ nS , then W (n) = Z and this derivative is negative. If instead n < nS , then we can use the

derivatives in the proof of Proposition 3 to write:

d

dn

(
nV1 (W (n))

n− 2

)
sign
= −V1 (W (n)) +

µθ − β
2γ

n (n− 2)

(n− 1)2
1− F (s)

F (s)

∫ s

0
[z (s)− z (s)] dF (s)

Using Eq. (A.7) and the expression for V1 (W (n)) in Eq. (A.11), we obtain the following necessary
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and suffi cient condition for d
dn

(
nV1(W (n))

n−2

)
< 0 when n < nS :

∫ s

0
[z (s)− z (s)]2 dF (s) >

1

F (s)

(
1 +

1− F (s)

n− 1

)(∫ s

0
[z (s)− z (s)] dF (s)

)2
This rearranges to:

z (s)− E1 (Z|s ≤ s)√
V1 (Z|s ≤ s)

<

√
n− 1

1− F (s)
(A.12)

where:

E1 (Z|s ≤ s) ≡ 1

F (s)

∫ s

0
z (s) dF (s)

and:

V1 (Z|s ≤ s) ≡ 1

F (s)

∫ s

0
(z (s))2 dF (s)−

(
1

F (s)

∫ s

0
z (s) dF (s)

)2
Since n ≥ 3 and F (s) ∈ [0, 1], a suffi cient condition for (A.12) is:

z (s)− E1 (Z|s ≤ s)√
V1 (Z|s ≤ s)

<
√

2 + ε (s)

where ε (s) ≡
√

2

(
1√

1−F (s)
− 1

)
≥ 0 and ε′ (s) > 0. From Eq. (A.7), we know that s is (weakly)

increasing in µθ−β
γ . The same is then true for ε (s) and we can define the (suffi cient) condition in

the statement of Lemma 1 independently of a particular value of s.

This completes the proof of Lemma 1. We next present a tractable example where the compen-

sation for risk term is decreasing in nm while the gains from trade term is increasing in nm; this

example can be skipped without loss to the proof of Lemma 1. Consider an asset Z with payoffs

z (s) = s, where s ∈ [0, S] is uniformly distributed according to F (s) = s
S . For ease of reference,

we introduce the notation

G (nm) ≡ σ2θ
2γ

nm − 2

nm − 1

[E1 (W (nm))]2

V1 (W (nm))

for the gains from trade term, and

R (nm) ≡ γ

2

nm
nm − 2

V1 (W (nm))

for the compensation for risk term, both evaluated at the equilibrium security derived in Proposition

2.
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Taking derivatives:

G′ (nm) =
σ2θ
2γ

nm − 2

nm − 1

E1 (W (nm))

V1 (W (nm))

[
E1 (W (nm))

(nm − 1) (nm − 2)
+ 2

dE1 (W (nm))

dnm
− E1 (W (nm))

V1 (W (nm))

dV1 (W (nm))

dnm

]

and:

R′ (nm) = −γ
2

nm
nm − 2

[
2V1 (W (nm))

nm (nm − 2)
− dV1 (W (nm))

dnm

]
If nm > nS , then W (nm) = Z and thus dE1(W (nm))

dnm
= dV1(W (nm))

dnm
= 0, which further implies

G′ (nm) > 0 and R′ (nm) < 0.

If instead nm ≤ nS , then Proposition 2 defines:

z (sm) = E1 (W (nm)) +
µθ − β

2γ

nm − 2

nm − 1

With z (s) = s and f (s) = 1
S , the equilibrium security has:

E1 (W (nm)) = sm

(
1− 1

2

sm
S

)
(A.13)

and:

V1 (W (nm)) =
s3m
S

(
1

3
− 1

4

sm
S

)
(A.14)

where:
1

2

s2m
S

=
µθ − β

2γ

nm − 2

nm − 1
(A.15)

The total derivatives of E1 (W (nm)) and V1 (W (nm)) with respect to nm are therefore:

dE1 (W (nm))

dnm
=

(
1− sm

S

)
µθ − β
2γ smS

1

(nm − 1)2

and:
dV1 (W (nm))

dnm
=
s2m
S

dE1 (W (nm))

dnm

Substituting into the expressions for G′ (nm) and R′ (nm), we get:

G′ (nm) =
σ2θ
4γ

sm

(nm − 1)2
E1 (W (nm))

V1 (W (nm))

1
3 +

(
1− sm

S

)2
4
3 −

sm
S

> 0
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and:

R′ (nm) = −γ
4

s3m
S

(
µθ−β
γS

nm−2
nm−1

) 1
2 − 4−nm

3

(nm − 1) (nm − 2)2

To help establish R′ (nm) < 0, notice that R′ (nm) < 0 for all nm ≥ 3 if and only if R′ (3) < 0.

Therefore, µθ−βγS > 2
9 is suffi cient for R

′ (nm) < 0. This condition on µθ−β
γ is consistent with the

suffi cient condition in Lemma 1; in fact, the condition derived here delivers an ε that ensures the

condition there holds. �

Proof of Proposition 4

It will suffi ce to show that the investor’s value function is decreasing in the number of investors in

her market for σ2θ low.

From Eq. (18), the expected profit of an investor in a market of size n is:

E0
(
V i (n)

)
=
σ2θ
2γ

n− 2

n− 1

[E1 (W (n))]2

V1 (W (n))
+
γ

2

n

n− 2
V1 (W (n)) (A.16)

where we write E0
(
V i (n)

)
to make explicit that we are evaluating the investor’s expected profit

at the equilibrium security derived in Proposition 2, denoted here by W (n) to make explicit its

dependence on the market size n.

Note that E0
(
V i (n)

)
is continuous and differentiable in n ∈ R+. Taking the derivative with

respect to n in Eq. (A.16), we obtain

d

dn
E0
(
V i (n)

)
=
σ2θ
2γ
X (n) +

γ

2

d

dn

(
nV1 (W (n))

n− 2

)
,

where

X (n) ≡ 1

(n− 1)2
[E1 (W (n))]2

V1 (W (n))
+
n− 2

n− 1

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
and

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
=
E1 (W (n))

V1 (W (n))

[
2
dE1 (W (n))

dn
− E1 (W (n))

V1 (W (n))

dV1 (W (n))

dn

]
If d

dnE0
(
V i (n)

)
< 0, then investors want to be in the smallest possible markets, and as long as

they can deviate in groups of three or more, i.e., ` ≥ 3 in Definition 1, all intermediaries will be

active.

From Lemma 1, d
dn

(
nV1(W (n))

n−2

)
< 0 when the payoffs of the asset Z satisfy the condition in the
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lemma. The next step is to show that X (n) is bounded. If n ≥ nS , then W (n) = Z and

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
= 0.

If instead n < nS , then we can use the derivatives in the proof of Proposition 3 to write

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
sign
= 1− E1 (W (n))

V1 (W (n))

∫ s

0
[z (s)− z (s)] dF (s) ,

which simplifies to

d

dn

(
[E1 (W (n))]2

V1 (W (n))

)
sign
= −

∫ s
0 z (s) [z (s)− z (s)] dF (s)

V1 (W (n))
< 0

after substituting E1 (W (n)) as per Eq. (A.6) and V1 (W (n)) as per Eq. (A.11). Thus,

X (n) ≤ 1

(n− 1)2
[E1 (W (n))]2

V1 (W (n))
≤ 1

4

[E1 (W (3))]2

V1 (W (3))

for all n ≥ 3, where n = 3 is the smallest market size for which there can be a well-defined

equilibrium price in Eq. (13). If nS > 3, then Eq. (A.7) defines s ∈ (0, S) and hence E1 (W (3)) ∈

(0,∞) and V1 (W (3)) ∈ (0,∞). In other words, [E1(W (3))]2

V1(W (3)) is bounded. If instead nS = 3, then
[E1(W (3))]2

V1(W (3)) = [E1(Z)]
2

V1(Z) , which is also bounded. It follows then that X (n) is bounded. Invoking the

condition on Z from Lemma 1, we can now conclude that there exists a bound σ > 0 such that
dE0(V i(n))

dn < 0 for all n ≥ 3 if σ2θ ≤ σ. �

Proof of Proposition 5

The first step is to consider what happens when the security is held fixed at Z. In this case, the

investor’s expected value is simply (proportional to):

EU (n) ≡
[(

σθ
γ

)2 n− 2

n− 1

(
E (Z)

V (Z)

)2
+

n

n− 2

]
V (Z)

where:
∂EU

∂n
=

[(
σθ
γ

)2 1

(n− 1)2

(
E (Z)

V (Z)

)2
− 2

(n− 2)2

]
V (Z)
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Therefore:
∂EU

∂n

sign
=

σθ√
2γ

E (Z)

V (Z)
− n− 1

n− 2
(A.17)

where n−1
n−2 is a decreasing function of n that takes on a minimum value of 1 as n→∞.

Lemma A.1 Consider a minimum market size of nmin ≥ 3. Then EU (n) is maximized at n =

nmin if
σθ
γ
E(Z)
V(Z) <

√
2(nmin−1)
nmin−2 and at n→∞ otherwise.

Proof. There are three cases from Eq. (A.17):

1. If σθ√
2γ

E(Z)
V(Z) ≤ 1, then ∂EU

∂n < 0 for all n. Thus, EU (n) is maximized at n = nmin.

2. If σθ√
2γ

E(Z)
V(Z) ∈

(
1, nmin−1nmin−2

)
, then there exists an n ∈ (nmin,∞) such that ∂EU

∂n = 0 but it

minimizes EU (n), i.e., ∂
2EU
∂n2

> 0. Thus, EU (n) is maximized at either n = nmin or n→∞.

Note that EU (nmin) > EU (∞) reduces to σθ√
2γ

E(Z)
V(Z) <

√
nmin−1
nmin−2 , where

√
nmin−1
nmin−2 <

nmin−1
nmin−2 is

trivially true for any nmin ≥ 3.

3. If σθ√
2γ

E(Z)
V(Z) ≥

nmin−1
nmin−2 , then

∂EU
∂n > 0 for all n. Thus, EU (n) is maximized at n→∞. �

Under `-stability for ` = N in Definition 1, Lemma A.1 implies fragmented markets if E(Z)V(Z) <

γ
σθ

√
2(nmin−1)
nmin−2 (because investors want to have a price impact to get higher compensation for risk)

and a centralized market if E(Z)V(Z) >
γ
σθ

√
2(nmin−1)
nmin−2 (because investors do not want to have a price

impact in anticipation of taking large positions to get gains from trade).

The second step is to return to the model with an endogenous security, i.e., W (n). For any

n ≥ nS , the optimal security is W (n) = Z, where Z is independent of n. Thus, the investor’s

expected value with endogenous security design, E0
(
V i (n)

)
, equals EU (n) for any n ≥ nS .

Consider the three cases in the proof of Lemma A.1. In Case 1, we can immediately conclude

that E0
(
V i (n)

)
will be maximized at some n < nS given that EU (n) is decreasing and convex for

any n ≥ nS (and E0
(
V i (n)

)
is assumed continuously differentiable at all points, including n = nS).

Thus, in Case 1, we get that only fragmented markets survive in equilibrium. In Cases 2 and 3,

if E0
(
V i (n)

)
has at most one critical point over n ∈ (nmin,∞), then it will suffi ce to just check

the endpoints because the properties of EU (n) imply that E0
(
V i (n)

)
is increasing and convex

starting at some n ∈ [nS ,∞) and therefore that the critical point, if it exists, must be a minimum.

Thus, in Cases 2 and 3, we get that only fragmented markets survive in equilibrium if and only if
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E0
(
V i (nmin)

)
≥ E0

(
V i (∞)

)
, or equivalently:19

(
σθ
γ

)2 ( E (Z)√
V (Z)

)2
−
(

E (W (nmin))√
V (W (nmin))

)2
nmin − 2

nmin − 1

 < nmin
nmin − 2

V (W (nmin))− V (Z)

Under the condition on the payoffs of Z in Lemma 1, d
dn

(
nV1(W (n))

n−2

)
< 0 for all n. Thus,

nmin
nmin−2V (W (nmin)) > V (Z). This means that a contradiction of E0

(
V i (nmin)

)
≥ E0

(
V i (∞)

)
requires both E(Z)√

V(Z)
> E(W (nmin))√

V(W (nmin))

√
nmin−2
nmin−1 and

σθ
γ suffi ciently large. Also recall that being in

Case 2 or 3 requires σθ√
2γ

E(Z)
V(Z) > 1. Accordingly, only fragmented markets survive in equilibrium

unless both E(Z)
V(Z) and

σθ
γ are suffi ciently large.

We now present an example of a distribution function F (s) that delivers E0
(
V i (n)

)
with at

most one critical point over n ∈ (nmin,∞).

Consider without loss of generality z (s) = s for s ∈ [0, S]. If s is uniformly distributed,

i.e., F (s) = s
S , then Eq. (A.7) gives

s
S = a

√
n−2
n−1 , where a ≡

√
µθ−β
γS . Thus, from Eq. (17),

nS = 2 + 1
a2−1 ∈ (3,∞) if and only if a ∈

(
1,
√

2
)
. Impose this restriction on a so that we

can consider market structures where debt-like securities are traded, i.e., market structures where

n < nS and thus s
S ∈ (0, 1) from Proposition 2.20

To obtain more compact expressions in what follows, define y ≡
√

n−2
n−1 so that

s
S = ay and

y ∈
[
1√
2
, 1a

]
for n ∈ [3, nS ]. The investor’s expected payoff is then (proportional to):

EV (y) = 3

(
σθ
γS

)2 y (2− ay)2

a (4− 3ay)
+

1

12

(
2

y2
− 1

)
(ay)3 (4− 3ay)

for y ≤ 1
a . Given the properties of EU (n) derived earlier for n ≥ nS , it will suffi ce to show that

EV ′′ (y∗) > 0 at any point y∗ ≤ 1
a where EV

′ (y∗) = 0.

The first and second derivatives are

EV ′ (y) = 6

(
σθ
γS

)2 (2− ay)
(
4− 6ay + 3a2y2

)
a (4− 3ay)2

− a3
(
ay − 2

3
+ y2 (1− ay)

)

and

EV ′′ (y) = 6

(
σθ
γS

)2(6 (2− ay)
(
4− 6ay + 3a2y2

)
(4− 3ay)3

− 1

)
− a3

(
a+ 2y − 3ay2

)
19To accommodate the integer issue, also check for nmin+1. Qualitatively, the conditions are the same as for nmin.
20Recall from the proof of Proposition 2 that a ≥

√
2 would imply W (n) = Z for all n ≥ 3. Also recall that a < 1

would imply W (n) 6= Z even as n→∞.
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respectively. If there exists a y∗ ≤ 1
a such that EV

′ (y∗) = 0, then

a4
(
ay∗ − 2

3 + y∗2 (1− ay∗)
)

(4− 3ay∗)2

(2− ay∗) (4− 6ay∗ + 3a2y∗2)
= 6

(
σθ
γS

)2
and thus EV ′′ (y∗) > 0 if and only if

a

(
ay∗ − 2

3
+ y∗2 (1− ay∗)

)(
6

4− 3ay∗
− (4− 3ay∗)2

(2− ay∗) (4− 6ay∗ + 3a2y∗2)

)
> a+ 2y∗ − 3ay∗2

(A.18)

In the limiting case of a =
√

2, the range y ∈
[
1√
2
, 1a

]
reduces to y = 1√

2
. It is straightforward to

verify that (A.18) is satisfied if y∗ = 1√
2
does indeed solve EV ′ (y∗) = 0 at a =

√
2. Both sides

of (A.18) are continuous in a and y∗, hence there exists an a ∈
(
1,
√

2
)
such that (A.18) will be

satisfied for any y∗ ∈
[
1√
2
, 1a

]
for any a ∈

(
a,
√

2
)
. Note that a ≡

√
µθ−β
γS and a ∈

(
a,
√

2
)
defines

a non-empty set of S for which the investor’s expected payoff will have at most one critical point

whenever the state s is uniformly distributed over the interval [0, S]. �

Proof of Proposition 6

Start with the intermediary’s expected payoff, E0 (Vm). Substituting λ−1m ≡ (nm − 2) into Eq. (14):

E0 (Vm) =

[
βE1 (Z) + (µθ − β)E1 (W (nm))− nm − 1

nm − 2
γV1 (W (nm))

]
× nm

This expression for E0 (Vm) is increasing in nm holding constant the security Wm, implying that

E0 (Vm) is increasing in nm for nm > nS since the equilibrium security for any nm > nS is simply

Wm = Z. It then remains to check that E0 (Vm) is also increasing in nm for nm ≤ nS when

evaluated at the equilibrium security W (nm).

With z (s) = z (0) + κs and f (s) = 1
S :

E1 (Wm) = z (0) + κsm

(
1− 1

2

sm
S

)

V1 (Wm) = κ2
s3m
S

(
1

3
− 1

4

sm
S

)
(
sm
S

)2
=
µθ − β
κγS

nm − 2

nm − 1
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for nm ≤ nS . Thus,

E0 (Vm) = κS

[
β

2
+
µθz (0)

κS
+ (µθ − β)

sm
S

(
2

3
− 1

4

sm
S

)]
nm

for nm ≤ nS . It is easy to show that sm
S

(
2
3 −

1
4
sm
S

)
is increasing in sm

S for any sm
S ∈ [0, 1]. We also

know from Proposition 3 that sm is increasing in nm. Therefore,
dE0(Vm)
dnm

> 0 for nm ≤ nS .

Turn now to total welfare. Ignore the integered nature of investors for the moment. There

are N investors, each getting the expected payoff E0
(
V i
m

)
in Eq. (18). There are also N

nm
active

intermediaries, each getting the expected payoffE0 (Vm) in Eq. (14). Inactive intermediaries receive

a payoff of zero. Total (expected) welfare at date t = 0 is then:

W = N × E0
(
V i
m

)
+

N

nm
× E0 (Vm)

where 1
nm
× E0 (Vm) is the expected, per-capita payoff of an active intermediary.

Substituting in Eq. (14) and (18):

W = N

(
βE1 (Z) + (µθ − β)E1 (Wm) +

σ2θ
2γ

nm − 2

nm − 1

[E1 (Wm)]2

V1 (Wm)
− γ

2
V1 (Wm)

)
(A.19)

Notice that the utility investors receive from the risk premium (i.e., compensation for risk term) is

outweighed by the negative effect of variance on the price that the intermediary receives.

The expression for W is increasing in nm holding constant the security Wm. Therefore, W

is increasing in nm for nm > nS and it only remains to check that W is also increasing in nm

for nm ≤ nS when evaluated at the equilibrium security. Using the expressions for E1 (W (nm)),

V1 (W (nm)), and sm above, we can write:

W = β

(
z (0) +

κS

2

)
N + z (0)

[
µ̂θ +

σ̂2θ
µ̂θ

2
(
1− x

2

)
+ z(0)

κS
1
x

2
3 −

x
2

]
κγSN

+

[
µ̂θx

(
1− x

2

)
+
σ̂2θ
µ̂θ

x
(
1− x

2

)2
2
3 −

x
2

− x3

2

(
1

3
− x

4

)]
γκ2S2N
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for nm ≤ nS , where x ≡ sm
S , µ̂θ ≡

µθ−β
κγS , and σ̂θ ≡

σθ
κγS . Taking derivatives:

dW
dx

= z (0)
σ̂2θ
µ̂θ

1
3 −

z(0)
κS

1
x2

(
2
3 − x

)(
2
3 −

x
2

)2 κγSN

+

 σ̂2θ
µ̂θ

(
1− x

2

) (
2
3 − x+ x2

2

)
(
2
3 −

x
2

)2 +

(
µ̂θ −

x2

2

)
(1− x)

 γκ2S2N
The expression for sm rearranges to

µ̂θ =
nm − 1

nm − 2
x2 > x2

and hence the second line in the expression for dW
dx is positive. If z (0) = 0, then it follows

immediately that dW
dx > 0. If instead z (0) > 0, then the first line in the expression for dW

dx is

positive if and only if:
z (0)

κS

(
1− 3x

2

)
<
x2

2

A suffi cient condition is z(0)κS < x2

2 evaluated at x =
√

µ̂θ
2 , which is the lowest possible x, specifically

the x associated with nm = 3. In other words, z (0) < µ̂θκS
4 is suffi cient for dW

dx > 0. The

(constrained effi cient) planner thus chooses nm = N and Wm = Z when z (0) is not too large.

Return now to the integered nature of investors. Denote by W (nm) the right-hand side of Eq.

(A.19), where Wm ≡W (nm) is the equilibrium security. In a market structure satisfying Eq. (19),

aggregate welfare is:

W = n×M1 ×
W (n)

N
+ (N − n×M1)×

W (n+ 1)

N
≤ W (n+ 1) ≤ W (N)

where the inequalities follow from the fact that W (n) is increasing in n when z (0) is not too large.

Recalling that W (N) is welfare when all investors trade in one market completes the proof. �
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Online Appendices

Appendix B —Extensions and Robustness

This appendix considers alternative formulations of our model. We demonstrate that the equilib-

rium association between market depth and security design uncovered by our model can be sup-

ported in all of these formulations. We summarize results that require formal proofs into Remarks,

with proofs collected in Section B.5.

B.1 Costly Supply

Up to this point, we have assumed that each intermediary m backs each unit of the security Wm

with exactly one unit of Z. This assumption allowed us to abstract from mechanical effects that

would arise from having a fixed supply of Z and a supply of Wm that scales with the number

of investors in each market. In particular, αm in constraint (1) would decrease with nm. This

reflects that the intermediary has to design more units of the security using a given amount of the

underlying asset. Accordingly, the security he can design is mechanically worse in the sense that

the maximum payoff to any investor is lower in any state s. All else constant, the price that the

intermediary can get for such a security is lower. In response, he will choose a higher sm to boost

the expected payoff and get a higher price. Thus, there would be a mechanical association between

higher nm and higher sm, which would reinforce our results but be independent of the price impact

that investors have in market m.

We can relax the assumption that each unit of Wm is backed by one unit of Z and allow the

intermediary to choose how many units of Z back each unit of Wm, subject to a cost of procuring

Z. In particular, intermediary m incurs a cost c (Am) to acquire Am units of Z which he then

uses to back nm units of Wm. The cost function satisfies the standard conditions c (0) = 0 and

c′ (·) > 0. The intermediary now choosesWm and Am subject to the feasibility constraint (1) where

αm = Am
nm
. This constraint replaces (2). The rest of the model is as before.

Remark 1 The key insights of Propositions 2 and 3 on security design continue to hold. The

equilibrium security Wm is a debt security with threshold state sm ∈ [0, S]. As before, sm is increas-

ing in nm so that the face value of Wm increases and the security becomes more equity-like as the

market size increases. The key insights on market structure also continue to hold. In particular,

the compensation for risk term in the investor value function is still decreasing in the size of the
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market, hence investors will choose to trade in many small markets if heterogeneity in investor

preference shocks, σ2θ, is low. We then know from the security design results that debt will be traded

in these markets.

B.2 Alternative Timing

Another assumption in our set-up relates to the timing of events. Specifically, we have assumed

that at date t = 0 financial intermediaries design securities after investors choose markets. An

alternative is that at date t = 0 investors choose markets after intermediaries design securities.

Then, as before, each investor i learns her preference shock θi at date t = 1, after which all markets

open and investors in each market trade the security that the corresponding intermediary has

designed.

Under this alternative timing, investors still make their market choice before the realization

of preference shocks and hence financial intermediaries issue standardized securities. However,

intermediaries can now compete for investors through security design. When designing the security

first, the intermediary commits to a particular payoff profile before investors choose their markets.

In other words, the intermediary designs a security whose payoff profile is independent of the

number of investors who show up. Nevertheless, the intermediary is rational so the security design

problem will take into account the best responses of investors.

We consider two financial intermediaries under this alternative timing and study the existence

of equilibria in which the market structure is symmetric.

Remark 2 The trading equilibrium is still characterized by Proposition 1. Moreover, a symmetric

market structure is supported in equilibrium for σ2θ low and the equilibrium security has the same

properties as in our main specification. That is, the security that prevails in equilibrium is debt,

and the threshold state above which the security delivers a flat payoff is increasing in the number

of investors in each intermediary’s market.

Thus, even under the alternative timing considered here, a symmetric equilibrium with two

large markets will involve the trading of a more equity-like security than a symmetric equilibrium

with two small markets, consistent with the results in our main set-up.
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B.3 Market Specialization

Up to this point, we have assumed that each investor chooses only one market in which to trade.

We now consider an extension where some investors can choose more than one market. This allows

us to explore conditions under which investors may specialize in markets for bonds or markets

for equity rather than participating in multiple markets. As in Babus and Hachem (2021), we

assume intermediaries have independent underlying assets Z when allowing for trading in more

than one market. None of the results derived so far (i.e., when each investor chooses only one

market) hinged on s being an aggregate state rather than an I.I.D. draw by each intermediary, so

the insights discussed here are directly comparable.21

Consider two groups of investors: X-investors and Y-investors. As in our main set-up, a local

market m is associated with each intermediary m. We add to this environment an additional

market e associated with its own intermediary. X-investors only have access to market e and, for

tractability, there is a mass ηX of X-investors so that trading in market e is perfectly competitive.

Thus, e can be interpreted as a centralized market or exchange. Y-investors have the option of

trading in the exchange as well as in one local market. In particular, there is a finite number

NY of Y-investors, each of whom can choose to (i) participate only in the centralized market, (ii)

participate only in a local market, or (iii) participate in both the centralized market and a local

market.22 The investor’s choice is subject to a per-market participation cost of K ≥ 0.

The optimal security in each market is characterized by Proposition 2, which in the perfectly

competitive exchange delivers Z. Furthermore, under Propositions 4 and 5, if the dispersion of

preference shocks among Y-investors is not too large, then all local markets are active, and hence

the security traded in each local market is debt. The expected payoff of a Y-investor is higher in a

local market than in the centralized market at such values of σ2θ. Since both expected payoffs are

positive, a Y-investor will choose to participate in both markets if K = 0. However, there exist

participation costs K > 0 where only the local market is profitable for Y-investors to participate in.

At these participation costs, we will observe one group (X-investors) trading equity in a centralized

market and another group (Y-investors) trading debt in fragmented markets, even though the Y-

investors had the option of trading in both markets. Also notice that debt and equity will coexist

21The choice of independent Z’s for the exposition of this extension is done for brevity. Even with the same Z,
investors may realistically choose to trade in one market despite having the opportunity to trade in many markets.
For example, Boyarchenko, Costello, and Shachar (2018) provide evidence that the majority of financial institutions
participate in either the corporate bond market or the CDS market, depending on the relative transaction costs, even
though there exist bonds and CDSs issued on the same entities.
22The analysis in Babus and Hachem (2021) informs us that a trading equilibrium exists in (iii).
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here in different markets, separately from the asymmetric equilibria discussed in Section 4.

B.4 Multiple Securities

We close by returning to our main set-up and relaxing the assumption that each intermediary m

designs only one security Wm for investors. Suppose instead that intermediary m can design two

securities, W 0
m andW

1
m, and that both securities can be traded by investors in market m. Denoting

by φm the relative supply of the additional security,

w0m (s) + φmw
1
m (s) ≤ z (s) ,∀s ∈ [0, S]

replaces (2) as the feasibility constraint on the intermediary’s security design problem in the main

model. The rest of the model is as before.

Remark 3 Proposition 2 now characterizes the aggregate security, Wm ≡W 0
m + φmW

1
m, designed

by an intermediary in a market with nm investors. There is a continuum of solutions for the

component securitiesW 0
m andW

1
m, with each solution aggregating to the payoff profile in Proposition

2.

That the component securities are not uniquely pinned down implies that what matters is

the portfolio of securities investors can trade in market m. Thus, Wm in Proposition 2 can be

interpreted as a fund rather than an individual security. The market structure results would then

follow as in the main model when investors trade the fund.

B.5 Proofs of Remarks

Proof of Remark 1 (Costly Supply)

Given nm, intermediary m chooses a security Wm to supply in market m. He still supplies one unit

of Wm per capita but now he chooses the number of units Am of the asset Z that back the nm

units of Wm. Previously, we had assumed Am = nm. We now let the intermediary choose Am at a

cost c (Am), where c (0) = 0 and c′ (·) > 0. To fix ideas, consider c (Am) = δ
2A

2
m.

Intermediary m’s expected payoff at date t = 1 is:

Vm = pmnm + βE1 (AmZ − nmWm)− δ

2
A2m
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The equilibrium price pm is still given by Eq. (13) so:

E0 (Vm) =

[
(µθ − β)E1 (Wm)− nm − 1

nm − 2
γV1 (Wm)

]
nm + βE1 (Z)Am −

δ

2
A2m

The Lagrangian for the intermediary’s problem can then be written as:

L = (µθ − β)nm

∫ S

0
wm (s) dF (s) (B.1)

−γnm (nm − 1)

nm − 2

[∫ S

0
(wm (s))2 dF (s)−

(∫ S

0
wm (s) dF (s)

)2]

+βE1 (Z)Am −
δ

2
A2m +

∫ S

0
υ (s) [Amz (s)− nmwm (s)] dF (s) + υAAm

where υ (s) ≥ 0 is the Lagrange multiplier on the feasibility constraint for state s, and υA ≥ 0 is

the multiplier on Am ≥ 0.

The first order condition for wm (s) is:

υ (s) = µθ − β − 2γ
nm − 1

nm − 2
[wm (s)− E1 (Wm)] (B.2)

where υ (s) ≥ 0 and Amz (s) ≥ nmwm (s) hold with complementary slackness. This implies that

the equilibrium security, conditional on nm, has payoffs:

wm (s) =

 Am
nm
z (s) if s < sm

Am
nm
z (sm) if s ≥ sm

where:

sm = arg min
k∈[0,S]

∣∣∣∣z (k)− nm
Am

(
E1 (Wm) +

µθ − β
2γ

nm − 2

nm − 1

)∣∣∣∣ (B.3)

and:

E1 (Wm) =
Am
nm

(
z (sm)−

∫ sm

0
[z (sm)− z (s)] dF (s)

)
(B.4)

The first order condition for Am is:

δAm = βE1 (Z) +

∫ S

0
υ (s) z (s) dF (s) + υA (B.5)
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Using Eq. (B.2) with E1 (Wm) as defined in Eq. (B.4), we can rewrite Eq. (B.5) as:

δAm = µθE1 (Z) + υA (B.6)

−2γ
nm − 1

nm − 2

Am
nm

[
E1 (Z)

∫ sm

0
[z (sm)− z (s)] dF (s)−

∫ sm

0
z (s) [z (sm)− z (s)] dF (s)

]

Consider Am > 0 so that υA = 0:

1. If sm = S, then Eq. (B.6) reduces to:

Am =
µθE1 (Z)

δ + 2γ nm−1
nm(nm−2)V1 (Z)

which confirms Am > 0. To confirm that Eq. (B.3) delivers sm = S, we need:

z (S)− E1 (Z) <
µθ − β

2γ

nm
Am

nm − 2

nm − 1

Substituting in the solution for Am, the condition for sm = S simplifies to:

nm (nm − 2)

nm − 1
>

2γ

δ

µθ
[
E1 (Z) z (S)− E1

(
Z2
)]

+ βV1 (Z)

µθ − β
(B.7)

The left-hand side of (B.7) is increasing in nm and the right-hand side is positive. Therefore,

sm = S if nm is above some threshold.

2. If the solution to Eq. (B.3) is interior, then sm is defined by:

∫ sm

0
[z (sm)− z (s)] dF (s) ≡ µθ − β

2γ

nm
Am

nm − 2

nm − 1
(B.8)

and we can use Eq. (B.8) to simplify Eq. (B.6) to:

Am

(
δ − 2γ

nm − 1

nm (nm − 2)

∫ sm

0
z (s) [z (sm)− z (s)] dF (s)

)
= βE1 (Z) (B.9)

Using Eq. (B.9) to substitute Am out of Eq. (B.8), we can then rewrite Eq. (B.8) as:

βE1 (Z)

µθ − β

∫ sm

0
[z (sm)− z (s)] dF (s) +

∫ sm

0
z (s) [z (sm)− z (s)] dF (s) =

δ

2γ

nm (nm − 2)

nm − 1
(B.10)

which implies ∂sm
∂nm

> 0. Notice from Eq. (B.8) that Am > 0 and, to confirm sm < S, we
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need nm below the threshold that delivered sm = S in the previous bullet, i.e., the opposite

condition of (B.7).

We have now shown that the key insights of Propositions 2 and 3 continue to hold. If small

markets are stable, then debt will be traded in that market structure. If large markets are stable,

then equity will be traded in that market structure.

Next, we show that small markets are stable if heterogeneity in investor preference shocks, σ2θ,

is suffi ciently low. The investor’s expected profit is still given by Eq. (18) so the key is to show that

the compensation for risk term is decreasing in nm. This amounts to showing
dV1(Wm)
dnm

< 2V1(Wm)
nm(nm−2)

for any nm.

The variance of the equilibrium security derived above is:

V1 (Wm) =

(
Am
nm

)2 [∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2]

Consider first any nm where the equilibrium security is Wm 6= Z. Then, Am depends on sm and

nm as per Eq. (B.8) and sm depends on nm as per Eq. (B.10). Therefore:

dV1 (Wm)

dnm
=

2V1 (Wm)

Am

(
dAm
dnm

− Am
nm

)
+

2A2m
n2m

[1− F (sm)] z′ (sm)
dsm
dnm

∫ sm

0
[z (sm)− z (s)] dF (s)

where:

z′ (sm)
dsm
dnm

=

δ
2γ

n2m−2nm+2
(nm−1)2

βE1(Z)
µθ−β

F (sm) +
∫ sm
0 z (s) dF (s)

and:

dAm
dnm

=
Am
nm

n2m − 2nm + 2

(nm − 1) (nm − 2)

1−
δ Am
µθ−β

F (sm)

βE1(Z)
µθ−β

F (sm) +
∫ sm
0 z (s) dF (s)


The condition we want to check, dV1(Wm)

dnm
< 2V1(Wm)

nm(nm−2) , simplifies to:

[1− F (sm)] z′ (sm)
dsm
dnm

∫ sm

0
[z (sm)− z (s)] dF (s)

<
1

nm

[
nm − 1

nm − 2
− nm
Am

dAm
dnm

] [∫ sm

0
[z (sm)− z (s)]2 dF (s)−

(∫ sm

0
[z (sm)− z (s)] dF (s)

)2]
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⇔

1 + [1− F (sm)]
[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
<

δ
2γ

nm(nm−2)
nm−1

1
F (sm)

(
n2m − 2nm + 2

)[
βE1(Z)
µθ−β

+ E1 (Z|s ≤ sm)
]

[z (sm)− E1 (Z|s ≤ sm)]

⇔

[1− F (sm)]

(nm − 1)2
[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
< 1−

n2m−2nm+2
(nm−1)2

V1 (Z|s ≤ sm)[
βE1(Z)
µθ−β

+ E1 (Z|s ≤ sm)
]

[z (sm)− E1 (Z|s ≤ sm)]

It follows from z′ (·) > 0 that E1 (Z) ≥ E1 (Z|s ≤ sm) and [z (sm)− E1 (Z|s ≤ sm)] > V1(Z|s≤sm)
E1(Z|s≤sm) ,

so a suffi cient condition for dV1(Wm)
dnm

< 2V1(Wm)
nm(nm−2) is:

[z (sm)− E1 (Z|s ≤ sm)]2

V1 (Z|s ≤ sm)
<
(
n2m − 2nm + 2

) β
µθ
− 1

The right-hand side is increasing in nm so, with nm ≥ 3, it will be enough to have:

z (k)− E1 (Z|s ≤ k)√
V1 (Z|s ≤ k)

<

√
5β

µθ
− 1,∀k ∈ (0, S]

with β > µθ
5 . Now consider any nm where the equilibrium security is Wm = Z, i.e., any nm

satisfying (B.7). Then:

V1 (Wm) =

(
Am
nm

)2
V1 (Z) =

(
µθE1 (Z)

δnm + 2γ nm−1nm−2V1 (Z)

)2
V1 (Z)

and:
dV1 (Wm)

dnm
=

2 (µθE1 (Z))2 V1 (Z)(
δnm + 2γ nm−1nm−2V1 (Z)

)3 ( 2γV1 (Z)

(nm − 2)2
− δ
)

and therefore dV1(Wm)
dnm

< 0 for nm unboundedly large, which falls in the range of nm defined by

(B.7). Accordingly, a suffi cient condition for dV1(Wm)
dnm

< 2V1(Wm)
nm(nm−2) for all nm is that no value of nm

satisfies both 2γV1(Z)
(nm−2)2

= δ and (B.7). Rewrite (B.7) as:

nm (nm − 2)

nm − 1
>

2γV1 (Z)

δ

(
1

1− β
µθ

E1 (Z) [z (S)− E1 (Z)]

V1 (Z)
− 1

)
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At any nm where 2γV1(Z)
(nm−2)2

= δ, this inequality becomes:

nm
(nm − 1) (nm − 2)

?
>

1

1− β
µθ

E1 (Z) [z (S)− E1 (Z)]

V1 (Z)
− 1

which is eliminated by a lowerbound on β relative to µθ.
23 With z (s) = s and F (s) = s

S , for

example, this lowerbound is β > −µθ
5 , which is trivially true. �

Proof of Remark 2 (Alternative Timing)

Suppose the timing is such that intermediaries post securities first, then investors choose markets.

Market choice is still made before the realization of investor preference shocks, but now intermedi-

aries can compete for investors through security design. By posting securities first, we mean that

the intermediary commits to a particular payoff profile before investors choose their markets. The

intermediary is rational so his security design problem will take into account the best responses

of investors. However, the intermediary cannot post a security whose payoff profile is contingent

on the number of investors who show up. That would constitute a customized contract, not a

standardized contract. The focus of our paper is on standardized contracts.

Consider two intermediaries, 1 and 2. Intermediary 1 offers a security W1 and attracts n1

investors. Intermediary 2 offers a security W2 and attracts N − n1 investors.

The expected value to investor i of trading Wm in a market of size nm is still given by E0
(
V i
m

)
in Eq. (18). In the extreme case of σ2θ = 0:

E0
(
V i
m

)
=
γ

2

nm
nm − 2

V1 (Wm) (B.11)

By a continuity argument, all results derived under σ2θ = 0 will extend to σ2θ ∈
(
0, σ
)
, where σ is

some positive upperbound.

Notice that nm
nm−2 in Eq. (B.11) is decreasing in nm. Also recall thatWm is no longer responsive

to nm at the stage where investors choose their markets. Eq. (B.11) says that investors want

a more variable security when σ2θ is low. This is because the trading equilibrium delivers a low

enough price (or, equivalently, a high enough risk premium) to compensate them for taking the

risk. Investors also want to take this risk in very small markets, reflecting the fact that the risk

23 In particular, nm
(nm−1)(nm−2) is decreasing in nm for nm ≥ 3, so a suffi cient condition is β >

µθ
5

(
5− 2E1(Z)[z(S)−E1(Z)]

V1(Z)

)
.
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premium increases with an individual investor’s price impact.

Given the securities W1 and W2, investors will move around until they are indifferent between

the two intermediaries. We abstract from the integered nature of investors here to avoid unnecessary

algebra. The best response of investors then yields a market structure characterized by n∗1, where

n∗1 solves:
n∗1

n∗1 − 2
V1 (W1) =

N − n∗1
N − n∗1 − 2

V1 (W2) (B.12)

Eq. (B.12) defines n∗1 as a function of
V1(W1)
V1(W2)

. Differentiate Eq. (B.12) to get:

dn∗1
dV1 (W1)

=
n∗1
2

1
1

n∗1−2
+

n∗1
(N−n∗1−2)(N−n∗1)

1

V1 (W1)

This derivative is positive. If intermediary 1 posts a more variable security than intermediary 2,

then intermediary 1 will attract more investors.

Each intermediary seeks to maximize his expected profit subject to a state-by-state feasibility

constraint on the payoffs of the security he designs. He still offers one unit of the security to each

investor in his market and, as in Appendix B.1, pays a cost to procure the assets that back this

security. The Lagrangian for intermediary 1’s problem is thus given by Eq. (B.1) but with n1 = n∗1,

where n∗1 depends on W1 as per Eq. (B.12). The choice variables are the payoffs w1 (s) for each

state s ∈ [0, S] and the number of units A1 of Z that will back the n∗1 units of W1.

The first order condition for w1 (s) is:

υ (s) = µθ − β −
γ

n∗1 − 2

2 (n∗1 − 1) +
(n∗1)

2 − 4n∗1 + 2

1 +
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

 [w1 (s)− E1 (W1)]

+
1

1
n∗1−2

+
n∗1

(N−n∗1−2)(N−n∗1)

w1 (s)− E1 (W1)

V1 (W1)

[
(µθ − β)E1 (W1)−

∫ S

0
υ (s)w1 (s) dF (s)

]

Multiply both sides by w1 (s) then integrate over s ∈ [0, S] to isolate:

∫ S

0
υ (s)w1 (s) dF (s) = (µθ − β)E1 (W1)−

γ

n∗1 − 2


2 (n∗1 − 1) +

(n∗1)
2−4n∗1+2

1+
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

1 + 1
1

n∗1−2
+

n∗1
(N−n∗1−2)(N−n∗1)

V1 (W1)
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We can now rewrite the first order condition for w1 (s) as:

υ (s) = µθ − β −
γn∗1
n∗1 − 2

n∗1 − 2 +
2(n∗1−1)(n∗1−2)

(N−n∗1−2)(N−n∗1)

n∗1 − 1 +
n∗1(n∗1−2)

(N−n∗1−2)(N−n∗1)

[w1 (s)− E1 (W1)] (B.13)

The first order condition for A1 still takes the form of (B.5).

In a symmetric equilibrium, both intermediaries offer the same security W . Eq. (B.12) implies

n∗1 = N
2 which, when substituted into Eq. (B.13), implies:

υ (s) = µθ − β − γ
N2 − 8

N (N − 4)
[w (s)− E1 (W )]

for each s ∈ [0, S]. Therefore, the security that prevails in a symmetric equilibrium has payoffs:

w (s) =

 2A
N z (s) if s < s

2A
N z (s) if s ≥ s

where the threshold s ∈ [0, S] is defined by:

s = arg min
k∈[0,S]

∣∣∣∣z (k)− N

2A

(
E1 (W ) +

µθ − β
γ

N (N − 4)

N2 − 8

)∣∣∣∣ (B.14)

and A solves:

A =
βE1 (Z) + (µθ − β)

∫ s
0 z (s) dF (s)

δ + 2γ(N2−8)
N2(N−4)

[∫ s
0 (z (s))2 dF (s)−

(∫ s
0 z (s) dF (s)

)2
−
∫ s
0 z (s) dF (s)

∫ S
s z (s) dF (s)

] (B.15)

If the solution to Eq. (B.14) is interior, we can combine Eq. (B.14) and (B.15) to get:

βE1 (Z)

µθ − β

∫ s

0
[z (s)− z (s)] dF (s) +

∫ s

0
z (s) [z (s)− z (s)] dF (s) =

δ

2γ

N2 (N − 4)

N2 − 8

We then need:

δ <
2γ

µθ − β
[
µθ
[
z (S)E1 (Z)− E1

(
Z2
)]

+ βV1 (Z)
] N2 − 8

N2 (N − 4)
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for the solution to indeed be interior, in which case:

ds

dN
=

δ

2γ

N
(
N3 − 24N + 64

)
(N2 − 8)2

1

z′ (s)
∫ s
0

[
z (s) + βE1(Z)

µθ−β

]
dF (s)

> 0

where the inequality follows from N ≥ 6 to ensure N
2 ≥ 3. Therefore, the alternative timing

considered here does not change the result that debt would be traded in smaller markets than

equity, all else the same. �

Proof of Remark 3 (Multiple Securities)

Consider an intermediary that designs two securities, W 0 and W 1, for investors. There are n

investors that can trade both securities. The demand functions of investor i are Qi0
(
p0, p1; θ

i
)

and Qi1
(
p0, p1; θ

i
)
for the securities W 0 and W 1, respectively, and her expected payoff after the

realization of θi (but before the realization of s) is:

V i =
[
θiE1

(
W 0
)
− p0

]
qi0 +

[
θiE1

(
W 1
)
− p1

]
qi1

−γ
2

[
V1
(
W 0
) (
qi0
)2

+ 2Cov1
(
W 0,W 1

)
qi0q

i
1 + V1

(
W 1
) (
qi1
)2]

The first order conditions of an investor i who trades both securities are:

[
θiE1

(
W 0
)
− p0

]
− γ

[
V1
(
W 0
)
qi0 + Cov1

(
W 0,W 1

)
qi1
]
− ∂p0
∂qi0

qi0 −
∂p1
∂qi0

qi1 = 0

[
θiE1

(
W 1
)
− p1

]
− γ

[
V1
(
W 1
)
qi1 + Cov1

(
W 0,W 1

)
qi0
]
− ∂p0
∂qi1

qi0 −
∂p1
∂qi1

qi1 = 0

Define σ20 ≡ V1
(
W 0
)
, σ21 ≡ V1

(
W 1
)
, and σ01 ≡ Cov1

(
W 0,W 1

)
. Also define λ00 ≡ ∂p0

∂qi0
, λ10 ≡ ∂p1

∂qi0
,

λ01 ≡ ∂p0
∂qi1
, and λ11 ≡ ∂p1

∂qi1
. The investor’s first order conditions can then be expressed more compactly

as:  θiE1
(
W 0
)
− p0

θiE1
(
W 1
)
− p1

 =

γ
 σ20 σ01

σ01 σ21

+

 λ00 λ10

λ01 λ11

 qi0

qi1


which isolates:

 qi0

qi1

 =

γ
 σ20 σ01

σ01 σ21

+

 λ00 λ10

λ01 λ11

−1 θiE1
(
W 0
)
− p0

θiE1
(
W 1
)
− p1
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Turn now to market clearing, which requires:

∑
i

 qi0

qi1

 =

 n

φn


where φ denotes the supply of W 1 relative to W 0. Rewrite as:

 qj0

qj1

+
∑
i 6=j

 qi0

qi1

 =

 n

φn


where:

∑
i 6=j

 qi0

qi1

 =

γ
 σ20 σ01

σ01 σ21

+

 λ00 λ10

λ01 λ11

−1∑
i 6=j

 θiE1
(
W 0
)

θiE1
(
W 1
)


− (n− 1)

γ
 σ20 σ01

σ01 σ21

+

 λ00 λ10

λ01 λ11

−1 p0

p1


from the first order conditions of investors i 6= j. Rearrange the rewritten market clearing equation

to isolate: p0

p1

 =

∑
i 6=j θ

i

n− 1

 E1
(
W 0
)

E1
(
W 1
)
+

1

n− 1

γ
 σ20 σ01

σ01 σ21

+

 λ00 λ10

λ01 λ11

 qj0

qj1

−
 n

φn


Thus, the price impacts solve the system:

 λ00 λ10

λ01 λ11

 =
1

n− 1

γ
 σ20 σ01

σ01 σ21

+

 λ00 λ01

λ10 λ11


which yields:

λ00 =
γσ20
n− 2

λ01 = λ10 =
γσ01
n− 2

λ11 =
γσ21
n− 2
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We can now write the investor demands as:

 qi0

qi1

 =
1

γ

n− 2

n− 1

 σ20 σ01

σ01 σ21

−1 θiE1
(
W 0
)
− p0

θiE1
(
W 1
)
− p1


which implies the market clearing prices:

 p0

p1

 =

∑
i θ
i

n

 E1
(
W 0
)

E1
(
W 1
)
− γ n− 1

n (n− 2)

 σ20 σ01

σ01 σ21

 n

φn


Turn next to the intermediary’s security design problem. The intermediary chooses W 0 and

W 1 to maximize his expected payoff,

E0 (Vm) =
[
E1 (p0) + φE1 (p1) + βE1

(
Z −W 0 − φW 1

)]
× n

subject to the feasibility constraint

w0 (s) + φw1 (s) ≤ z (s) ,∀s ∈ [0, S] .

The Lagrangian for the security design problem is then:

L =
[
E1 (p0) + φE1 (p1) + βE1

(
Z −W 0 − φW 1

)]
× n

+

∫ S

0
υ (s)

[
z (s)− w0 (s)− φw1 (s)

]
dF (s)

where υ (·) ≥ 0 are Lagrange multipliers. Subbing in the equilibrium prices:

L =

[
βE1 (Z) + (µθ − β)

(
E1
(
W 0
)

+ φE1
(
W 1
))
− γn− 1

n− 2

(
σ20 + 2φσ01 + φ2σ21

)]
× n

+

∫ S

0
υ (s)

[
z (s)− w0 (s)− φw1 (s)

]
dF (s)
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Subbing in the definitions of the expectations, variances, and covariance:

L =



βE1 (Z) + (µθ − β)
∫ S
0

(
w0 (s) + φw1 (s)

)
dF (s)

−γ n−1n−2

[∫ S
0

(
w0 (s)

)2
dF (s)−

(∫ S
0 w

0 (s) dF (s)
)2]

−2φγ n−1n−2

[∫ S
0 w

0 (s)w1 (s) dF (s)−
∫ S
0 w

0 (s) dF (s)
∫ S
0 w

1 (s) dF (s)
]

−γ n−1n−2φ
2

[∫ S
0

(
w1 (s)

)2
dF (s)−

(∫ S
0 w

1 (s) dF (s)
)2]


× n

+

∫ S

0
υ (s)

[
z (s)− w0 (s)− φw1 (s)

]
dF (s)

Grouping like terms:

L =

 βE1 (Z) + (µθ − β)
∫ S
0

(
w0 (s) + φw1 (s)

)
dF (s)

−γ n−1n−2

[∫ S
0

(
w0 (s) + φw1 (s)

)2
dF (s)−

(∫ S
0

(
w0 (s) + φw1 (s)

)
dF (s)

)2]
× n

+

∫ S

0
υ (s)

[
z (s)− w0 (s)− φw1 (s)

]
dF (s)

Thus, the intermediary’s problem is entirely a function of w0 (·)+φw1 (·); the individual components

w0 (·) and w1 (·) are not separately defined. The security design problem therefore recovers the one

that delivers Proposition 2. �
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Appendix C —Derivations for Section 4

Below we present derivations that support the discussion in Section 4.1 and Section 4.2.

Asymmetric Equilibria with Common Underlying Asset (Section 4.1)

We consider a variation of our main set-up in which every investor has pre-existing relationships

with a subset of intermediaries formed from interactions outside the model. Intermediaries are

heterogeneous in the number of investors they have relationships with, with some intermediaries

having more and others having less. Each investor chooses an intermediary in whose market to

trade from the subset of intermediaries that she has a relationship with. The following lemma

illustrates how a setting with pre-existing relationships can support asymmetric equilibria, and

specifically asymmetric equilibria where debt and equity co-exist:

Lemma C.1 Consider N investors each having a relationship with two of three intermediaries,

{A,B,C}. Denote by nmm′ ≥ 3 the number of investors that have relationships with intermediaries

m and m′, for m,m′ ∈ {A,B,C} and m 6= m′, where nAB + nAC + nBC = N . Without loss of

generality, suppose nAB > nAC > nBC . Then the `-stable equilibrium for ` = N is as follows:

1. For parameters such that all investors want to be in the largest possible markets, the equilib-

rium market structure has one market of size nAB + nAC and one market of size nBC . If

nAB + nAC > nS > nBC , then debt is traded in one market and equity is traded in the other.

2. For parameters such that all investors want to be in the smallest possible markets, debt and

equity coexist if nAB > max
{
2N
3 , 2nS , N − nS

}
in the case where the investor value function

evaluated at the optimal security is monotonically decreasing.

The second part of Lemma C.1 focuses on a monotonically decreasing investor value function

because that is the case where asymmetric equilibria are more diffi cult to obtain.24

24Consider a value function satisfying argmaxn∈[3,N ] E0
(
V im (n)

)
= {3} and E0

(
V im (4)

)
= E0

(
V im (ñ)

)
for some

ñ > 4. In words, all investors want to be in the smallest possible markets but the investor value function is not
monotonically decreasing (it could be U-shaped, for example). With N = ñ+6 investors, an asymmetric equilibrium
with one market of size ñ and two markets each of size 3 is stable even if all three intermediaries in Lemma C.1
have pre-existing relationships with all N investors. If instead the value function were monotonically decreasing, then
only the symmetric equilibrium with three markets each of size N

3
would be stable if all three intermediaries had

pre-existing relationships with all N investors.
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Proof of Lemma C.1 With nAB > nAC > nBC , intermediary A has relationships with the

greatest number of investors. The total number of investors with access to intermediary A is

nAB +nAC . If investors want to trade in the largest possible markets, then all investors with access

to intermediary A end up with A under `-stability for ` = N in Definition 1, forming a market of

size nAB + nAC . The remaining investors will form a market of size nBC with either intermediary

B or C, leaving one intermediary inactive.

Now suppose investors want to trade in the smallest possible markets. Under the assumption

that the investor value function (evaluated at the optimal security) is monotonically decreasing in

market size, we can start with any initial market structure and see how investors will move around

to form a stable equilibrium. Consider an initial market structure where intermediary C gets nBC

investors (any of whom can move to intermediary B), intermediary B gets nAB investors (any of

whom can move to intermediary A), and intermediary A gets nAC investors (any of whom can

move to intermediary C). To reduce notation, we abstract from the integered nature of investors

in what follows. With nAC > nBC , some of the investors with intermediary A will want to move to

intermediary C. Specifically, nAC−nBC2 investors will move from A to C, leaving each of A and C

with nAC+nBC
2 investors. Note that nAB > nAC > nBC implies nAB > nAC+nBC

2 . Thus, some of the

investors with intermediary B will want to move to intermediary A, triggering a further move from

A to C. Denote by x the number of investors that move from B to A. The number of investors that

further moves from A to C is then min
{
x
2 ,

nAC+nBC
2

}
. This will leave intermediary m ∈ {A,B,C}

with ñm investors, where

ñB = nAB − x

ñA =
nAC + nBC

2
+ x−min

{
x

2
,
nAC + nBC

2

}

ñC =
nAC + nBC

2
+ min

{
x

2
,
nAC + nBC

2

}
The movement of investors from B to A will stop when ñB = ñA, or equivalently

nAB − x =
nAC + nBC

2
+ x−min

{
x

2
,
nAC + nBC

2

}
(C.1)

If x ≤ nAC + nBC , then Eq. (C.1) simplifies to x = 2nAB−nAC−nBC
3 so we would need nAB ≤

2 (nAC + nBC) to verify x ≤ nAC + nBC . If instead x > nAC + nBC , then Eq. (C.1) simplifies to

x = nAB
2 so we would need nAB > 2 (nAC + nBC) to verify x > nAC+nBC . Using nAB+nAC+nBC ≡
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N , we can summarize the solution to Eq. (C.1) as

x =

 nAB − N
3 if nAB ≤ 2N

3

nAB
2 if nAB > 2N

3

Thus, the equilibrium has three markets each of size N
3 if nAB ≤

2N
3 . Otherwise, if nAB > 2N

3 , the

equilibrium has two markets each of size nAB
2 and one market of size N − nAB and hence debt and

equity will coexist for nAB suffi ciently large, specifically
nAB
2 > nS > N − nAB, making the overall

condition for coexistence nAB > max
{
2N
3 , 2nS , N − nS

}
. �

Figure C.1. Relationships example with M = 3 and N = 16.

Figure C.1 provides an example of a relationship network with N = 16, where nAB = 8,

nAC = 5, and nBC = 3. Following Lemma C.1, the equilibrium market structure will be asymmetric

if investors want to trade in the largest possible markets, with one market of size 13 and one market

of size 3 prevailing as the only stable market structure, but it will be (roughly) symmetric if investors

want to trade in the smallest possible markets, with two markets of size 5 and one market of size

6 prevailing as the only stable market structure. As the total number of investors N increases,

many more examples can be constructed. Consider, for example, N = 65. If nAB = 30, nAC = 20,

and nBC = 15, then the equilibrium is again (roughly) symmetric if investors want to trade in the

smallest possible markets. However, if nAB = 50, nAC = 10, and nBC = 5, then the equilibrium

is asymmetric even if investors want to trade in the smallest possible markets.25 The discussion

25 In the first case, the only stable market structure is two markets of size 22 and one market of size 21. In the
second case, the only stable market structure is two markets of size 25 and one market of size 15.
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of asymmetric equilibria here is not meant to be exhaustive about asymmetric equilibria per se.

Rather, it is meant to highlight that our model admits equilibria where some intermediaries issue

debt securities and others issue equity even when securities are backed by the same underlying asset

Z. In these equilibria, debt is endogenously traded in smaller markets than equity, for the same

reasons we discussed in the analysis of symmetric equilibria.

Asymmetric Equilibria with Different Underlying Assets (Section 4.2)

Consider z (s) = κs and f (s) = 1
S . The mean and variance of the underlying asset are then

E1 (Z) = κS
2 and V1 (Z) = κ2S2

12 .

If nm ≤ nS , then the mean and variance of the asset-backed security are:

E1 (W (nm)) = κsm

(
1− 1

2

sm
S

)

V1 (W (nm)) = κ2
s3m
S

(
1

3
− 1

4

sm
S

)
where sm is characterized by: (

sm
S

)2
=
µθ − β
κγS

nm − 2

nm − 1

Thus:

V1 (W (nm)) =

(
µθ − β
γ

nm − 2

nm − 1

) 3
2

(√
κS

3
− 1

4

(
µθ − β
γ

nm − 2

nm − 1

) 1
2

)

so, for a given nm, an increase in κ will increase the variance V1 (W (nm)) of the asset-based security

that the intermediary designs.

At any κ, the condition for the investor’s value function to achieve a higher value at n = nmin

than at n→∞ is:

(
σθ
κγS

)2 3−
ymin

(
1− a√

κ
ymin
2

)2
a√
κ

(
1
3 −

a√
κ
ymin
4

)
 < ( a√

κ

)3
ymin

(
2− y2min

)(1

3
− a√

κ

ymin
4

)
− 1

12
(C.2)

where a ≡
√

µθ−β
γS and ymin ≡

√
nmin−2
nmin−1 . Note

nS = 2 +
1(

a√
κ

)2
− 1
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from Eq. (17) and thus nS ∈ (3,∞) requires a√
κ
∈
(
1,
√

2
)
. If the number of intermediaries M is

such that nmin = 3, then ymin = 1√
2
and Eq. (C.2) becomes:

(
σθ
κγS

)2
<
ã
(√

2
3 −

ã
4

) [
ã3

2
√
2

(
1− 3ã

4
√
2

)
− 1

12

]
3ã√
2
− 7ã2

8 − 1
≡ Y (ã)

where ã ≡ a√
κ
∈
(
1,
√

2
)
. It is straightforward to verify that Y (·) is positive, increasing, and

concave over the interval ã ∈
(
1,
√

2
)
. It will then be suffi cient to have

(
σθ
κγS

)2
< Y (1). If the

investor’s value function has at most one critical point, then the value function will be maximized

at n = nmin if
σθ
κγS ∈

(
1
3
√
2
,
√
Y (1)

)
, where the lowerbound is the condition to be in Case 2 or 3 in

the environment of the proof of Proposition 5.26 Note that this range for σθ
κγS is non-empty.

The following figure presents an example:

This figure is drawn for
(
σθ
γS

)2
= 0.065 and

√
µθ−β
γS = 1.15, ignoring the scaling factor γS2

2 .

26The appeal of these cases is that they permit a direct comparison of the endpoints. Case 1 would require an
additional step to show that the value function is maximized at n = nmin rather than n ∈ (nmin, nS).
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Specifically, we plot

EV (y) =

(
σθ
γS

)2 y (√κ− ay
2

)2
a
(√

κ
3 −

ay
4

) + a3y
(
2− y2

)(√κ
3
− ay

4

)

over the range y ∈
[
1√
2
, 1
]
for different values of κ. For all plotted values of κ, the investor’s value

function is maximized at the smallest possible market size, nm = 3, which corresponds to y = 1√
2
.27

Suppose M ′ intermediaries have κ′ = 1 while the remaining M ′′ intermediaries have κ′′ = 1.1.

Denote by EV (n;κ) the expected value of an investor in a market of size n when the intermediary

has an underlying asset characterized by κ. We can see from the above figure that EV (3; 1) =

EV (n; 1.1) has a solution n∗ ∈ (3,∞). We can also see from the shapes of the value functions for

κ = 1 and κ = 1.1 that there is no profitable deviation for investors if all M ′′ intermediaries are

active and each investor in the economy achieves an expected value of EV (3; 1). Thus, a market

structure where M ′′ intermediaries each get n∗ investors and M̃ ′ of the M ′ intermediaries each get

3 investors is stable when the total number of investors in the economy is N = M̃ ′×3+M ′′×n∗ for

M̃ ′ ∈ [1,M ′]. The investors in the M ′′ markets trade a more variable security than the investors

in the M̃ ′ markets because of both the higher κ and the larger market size.

Now suppose M ′ intermediaries have κ′ = 1.1 while the remaining M ′′ intermediaries have

κ′′ = 1.3. Also suppose that N ′ investors only have relationships with the M ′ intermediaries while

the remaining N ′′ investors can choose to trade in any market. From the shapes of the value

functions for κ = 1.1 and κ = 1.3 above, we can see that investors are generally better off in smaller

markets. For example, if N ′ = 8×M ′ and N ′′ = 4×M ′′, then each of the M ′ intermediaries will

get n′ = 8 investors while each of the M ′′ intermediaries will get n′′ = 4 investors. The security

issued by the M ′ intermediaries then has variance 0.101× S2 while the security issued by the M ′′

intermediaries has variance 0.120× S2. In other words, investors in the larger markets trade a less

variable security than investors in the smaller markets.

27For the highest value of κ in the figure, the model is in Case 1, which, for the parameterization shown, is also
able to deliver the smallest possible market size as the unique symmetric equilibrium.
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