
C Appendix: Trading in Segmented Markets

C.1 General set-up

Our framework can provide insights about trade in segmented markets as well. Markets are
segmented when investors, such as hedge funds and asset management firms, trade in some
markets but not in others. Although segmented, markets can be connected, in the sense agents
are able to trade in multiple venues at the same time. To study the implications in segmented
markets, we extend our model in the following way.

We consider an economy in which there are N trading posts connected in a network g. At
each trading post, I, there exist nI risk-neutral dealers. The entire set of dealers is denoted
N =

⋃N
I=NI. Each dealer i ∈ I can trade with other dealers in his own trading post and with

dealers at any trading post J that is connected with the trading post I by a link IJ . Essentially,
the link IJ represents a market in which dealers at trading posts I and J can trade with each
other. However, they have access to trade in other markets at the same time. Let gI denote
the set of trading posts that are linked with I in the network g, and mI ≡

∣∣gI ∣∣ represent the
number of I’s links.

As before, dealers trade a risky asset in zero net supply, and all trades take place at the
same time. Each dealer is uncertain about the value of the asset. In particular, a dealer’s
value for the asset is given by θi, which is a random variable normally distributed with mean
0 and variance σ2

θ . Moreover, we consider that values are interdependent across all dealers. In
particular, V(θi, θj) = ρσ2

θ for any two agents i, j ∈ N . Each dealer receives a private signal,
si = θi + εi, where εi ∼ IIDN(0, σ2

ε) and V(θj , εi) = 0, for all i and j.
A dealer i ∈ I seeks to maximize her final wealth∑

J∈gI
qiIJ
(
θi − pIJ

)
,

where qiIJ is the quantity traded by dealer i in market IJ , at a price pIJ . Similarly to the OTC
model, the trading strategy of the dealer i with signal si is a generalized demand function
Qi : Rm

i → Rm
i

which maps the vector of prices, pgI = (pIJ)J∈gI , that prevail in the markets
in which dealer i participates in network g into a vector of quantities she wishes to trade

Qi(si; pgI ) =
(
QiIJ(si; pgI )

)
J∈gI

,

where QiIJ(si; pgI ) represents her demand function in market IJ .
Apart from trading with each other, dealers also serve a price-sensitive customer base. In

particular, we assume that for each market IJ , the customer base generates a downward sloping
demand

DIJ(pIJ) = βIJpIJ , (C.1)

with an arbitrary constant βIJ < 0. The exogenous demand (C.1) ensures the existence of the
equilibrium when agents are risk neutral, and facilitates comparisons with the OTC model.

The expected payoff for dealer i ∈ I corresponding to the strategy profile
{
Qi
(
si; pgI

)}
i∈N

is

E

∑
J∈gI

QiIJ(si; pgI )
(
θi − pIJ

)
|si


64



where pIJ are the prices for which all markets clear. That is, prices satisfy∑
i∈I

QiIJ
(
si; pgI

)
+
∑
j∈J

QjIJ
(
sj ; pgJ

)
+ βIJpIJ = 0, ∀ IJ ∈ g. (C.2)

C.2 Equilibrium concept

As in the OTC game, we use the concept of Bayesian Nash equilibrium. For completeness, we
reproduce it below.

Definition 3 A Linear Bayesian Nash equilibrium of the segmented market game is a vector of
linear generalized demand functions

{
Qi
(
si; pgI

)}
i∈N such that Qi(si; pgI ) solves the problem

max
(QiIJ )

J∈gI
E


∑
J∈gI

QiIJ(si; pgI )
(
θi − pIJ

) ∣∣si
 , (C.3)

for each dealer i, where the prices pIJ satisfy (C.2) .

A dealer i chooses a demand function in each market IJ , in order to maximize her expected
profits, given her information, si, and given the demand functions chosen by the other dealers.

C.3 The Equilibrium

In this section, we outline the steps for deriving the equilibrium in the segmented market game
for any network structure. First, we derive the equilibrium strategies as a function of posterior
beliefs. Second, we construct posterior beliefs that are consistent with dealers’ optimal choices.
In the OTC game we used the conditional guessing game as an intermediate step in constructing
beliefs. Here, we employ the same line of reasoning, although we do not explicitly introduce
the conditional guessing game structure that would correspond to the segmented market game.

C.3.1 Derivation of demand functions

We conjecture an equilibrium in demand functions, where the demand function of dealer i in
market IJ is given by

QiIJ(si; pgI ) = tIIJ(yIIJs
i +

∑
K∈gI

zIIJ,IKpIK − pIJ) (C.4)

for any i ∈ I and J . As evident in the notation, we consider that all dealers at trading post
I are symmetric in their trading strategy, and weigh in same way the signal they receive and
the prices they trade at. Nevertheless, they end up trading different quantities, as they have
different realizations of the signal.

We solve the optimization problem (C.3) pointwise. That is, for each realization of the
vector of signals, s, we solve for the optimal quantity qiIJ that each dealer i ∈ I demands in
market IJ . Given the conjecture (C.4) and the market clearing conditions (C.2), the residual
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inverse demand function of dealer i in market IJ is

pIJ = −
tIIJy

I
IJ

∑
k∈I,k 6=i

sk + tJIJy
J
IJ

∑
k∈J

sk + (NI − 1)
∑

L∈gI ,L 6=J
tIIJz

I
IJ,ILpIL +NJ

∑
L∈gJ ,L6=I

tJIJz
J
IJ,JLpJL + qiIJ

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

.

(C.5)
Denote

IJi ≡ −
tIIJy

I
IJ

∑
k∈I,k 6=i

sk + tJIJy
J
IJ

∑
k∈J

sk + (NI − 1)
∑

L∈gI ,L6=J
tIIJz

I
IJ,ILpIL +NJ

∑
L∈gJ ,L6=I

tJIJz
J
IJ,JLpJL

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

(C.6)
and rewrite (C.5) as

pIJ = IJi −
1

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

qiIJ . (C.7)

The uncertainty that dealer i faces about the signals of others is reflected in the random in-
tercept of the residual inverse demand, IJi , while her capacity to affect the price is reflected in

the slope −1/
(

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ t

J
IJ

(
zJIJ,IJ − 1

)
+ βIJ

)
. In the segmented mar-

kets game, however, the random intercept IJi reflects not only the signals of the dealers at the
trading post J , but also the signals of the other dealers at the trading post I.

Then, solving the optimization problem (C.3) is equivalent to finding the vector of quantities
qi = Qi(si; pgI ) that solve

max
(qiIJ )

j∈gI

∑
J∈gI

qiIJ

E (θi|si,pgI)−
IJi − qiIJ

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ


From the first order conditions we derive the quantities qiIJ that dealer i ∈ I trades in each
market IJ , for each realization of s, as

2
1

(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ tJIJ

(
zJIJ,IJ − 1

)
+ βIJ

qiIJ = IJi − E
(
θi|si,pgI

)
,

This implies that the optimal demand function

QiIJ(si; pgi) = −
(
(NI − 1) tIIJ

(
zIIJ,IJ − 1

)
+NJ t

J
IJ

(
zJIJ,IJ − 1

)
+ βIJ

) (
E(θi

∣∣si,pgI )− pIJ
)

(C.8)
for each dealer i in market IJ .

Further, given our conjecture (C.4), equating coefficients in equation (C.8) implies that

E(θi
∣∣si,pgI ) = yIIJs

i +
∑
K∈gI

zIIJ,IKpIK .

However, the projection theorem implies that the belief of each dealer i can be described as
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a unique linear combination of her signal and the prices she observes. Thus, it must be that
yIIJ = yI , and zIIJ,JK = zIIK for all I, J , and K. In other words, the posterior belief of a dealer
i is given by

E(θi
∣∣si,pgI ) = yIsi + zgIpgI , (C.9)

where zgI =
(
zIIJ
)
J∈gI is a row vector of size mi. Then, we obtain that the trading intensity

of dealer at trading post I satisfies

tIIJ = (NI − 1) tIIJ
(
1− zIIJ

)
+NJ t

J
IJ

(
1− zJIJ

)
− βIJ . (C.10)

If we further substitute this into the market clearing conditions (C.2) we obtain the price
in market IJ as follows

pIJ =

tIIJ

(∑
i∈I

E
(
θi|si,pgI

))
+ tJIJ

(∑
j∈J

E
(
θj |sj ,pgJ

))
NItIIJ +NJ tJIJ − βIJ

. (C.11)

From (C.10) and the analogous equation for tJIJ , it is straightforward to derive the trading
intensity that dealers at trading post I and J have. This implies that we can obtain the price
in each market IJ as

pIJ = wIIJ

(∑
i∈I

E
(
θi|si,pgI

))
+ wJIJ

∑
j∈J

E
(
θj |sj ,pgJ

) , (C.12)

where

wIIJ ≡
zJIJ − 2

(NJ +NI − 1) zIIJz
J
IJ − 2 (NI − 1) zIIJ − 2 (NJ − 1) zJIJ − 4

.

This expression is useful to relate the belief of a dealer i ∈ I to the beliefs of other dealers at
the same trading post, and at trading posts that are connected to I.

C.3.2 Derivation of beliefs

We follow the same solution method that we developed in Section 3.1. As before, the key idea
is to reduce the dimensionality of the problem and use our conjecture about demand functions
to derive a fixed point in beliefs, instead of the fixed point (C.8).

In the OTC game we constructed each dealer’s equilibrium belief as a linear combination
of the beliefs of her neighbors in the network. For this, we introduced the conditional guessing
game. The conditional guessing game was a useful intermediate step in making the derivations
more transparent, as well as an informative benchmark about the role of market power for the
diffusion of information.

In the segmented market game it is less straightforward to formulate the corresponding
conditional guessing game. Since there are multiple dealers at each trading post, it is not
immediate how each dealer forms her guess. In particular, we would need to make additional
assumptions about the linear combination of the guesses of dealers in the same trading post
and dealers of the neighboring trading post, that each agent can condition her guess on.

Thus, in the segmented market game we construct beliefs directly as linear combinations
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of signals. We conjecture that for each dealer i ∈ I, her belief is an affine combination of the
signals of all dealers in the economy

E
(
θi|si,pgI

)
= v̄IIIs

i +
N∑
K=1

vIIKS
K , (C.13)

where SK =
∑
k∈K

sk, ∀K. This further implies that

∑
i∈I

E
(
θi|si,pgI

)
= v̄IIIS

I +NI

N∑
K=1

vIIKS
K .

Before we derive the fixed point equation for beliefs, it is useful to write (C.12) in matrix
form, for each trading post I. For this we introduce some more notation. Unless specified
otherwise, in the notation below we keep I fixed and vary J ∈ {1, ..., N}. Let pI be aN−column
vector with elements pIJ if IJ ∈ g, and 0 otherwise. Let zI be aN−column vector with elements
zIIJ if IJ ∈ g, and 0 otherwise. Similarly, let wI be the N−column vector with elements wIIJ
if IJ ∈ g, and 0 otherwise, while WI be a matrix with elements wJIJ on diagonal if IJ have a
link, and 0 otherwise (all elements off-diagonal are 0, as well). Further, let vI be the N−row
vector with elements vIIJ , and v̄I be the N−row vector with elements v̄III at position I and 0
otherwise. Let V be the square matrix with rows vI , and V̄ be the matrix with rows v̄I . Let
S be the N−column vector with elements SI . Let N be a square matrix with elements nI on
diagonal and 0 otherwise. Let 1 be the N−column vector of ones.

Substituting our conjecture for beliefs (C.13) in the equation for the price (C.12), we obtain
the vector of prices which dealers at each trading post I are trading as

pI = wI
(
v̄I + nIvI

)
S +W I

(
V̄ + NV

)
S.

We are now ready to formalize the result.

Proposition C.1 There exists an equilibrium in the segmented markets game if the following
system of equations

vI =
(
zI
)> (

wI
(
v̄I + nIvI

)
+W I

(
V̄ + NV

))
1,∀I (C.14)

and
v̄III = yI , ∀I

admits a solution in vI , for each I.

Proof. As for the OTC game, the proof is constructive. Note that showing that equation
(C.14) admits a solution is equivalent to showing that there exists a fixed point in vI . This is
because, the projection theorem implies that zI , and inherently, wI are a function of vI .

Let vI be a fixed point of (C.14) and v̄III = yI , for each I. We construct an equilibrium for
the segmented-market game with beliefs given by (C.13), as follows. We choose conveniently
zI and wI such that

E
(
θi|si,pgI

)
= yIsi +

(
zI
)> (

wI
(
v̄I + nIvI

)
+W I

(
V̄ + NV

))
S
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is satisfied. Then, it follows that the prices given by (C.11) and demand functions given by
(C.8) is an equilibrium of the OTC game.

The derivation we have outlined above also highlights the main technical difficulty of the
segmented market game relative to the OTC game. That is, the signals of dealers in the same
trading post obscure the (sum of) beliefs of the dealers in neighboring trading posts, such that
a dealer can no longer invert the prices she observes and infer what his neighbors posteriors.

C.4 Learning and illiquidity in a star network

In this section, we illustrate the effects of market integration on learning from prices and
market liquidity in an example.In particular, we restrict ourselves to considering a star network,
in which there are nP dealers at each periphery trading post, and nC dealers at the central
trading post. In particular, we conduct the following numerical exercise. We consider an
economy with nine agents. Keeping their information set fixed, we compare the following four
market structures:

1. 8 trading posts connected in a star network, with one agent in each trading post (N = 8,
nP = 1, nC = 1), that is, 8 trading venues. This is our baseline model with a star
network.

2. 4 trading posts connected in a star network, with two agents in each periphery node and
one agent in the central node (N = 4, nP = 2, nC = 1), that is, 4 trading venues.

3. 2 trading posts connected in a star network, with four agents in each periphery node and
one agent in the central node (N = 2, nP = 4, nC = 1), that is, 2 trading venues.

4. A centralized market (N = 1, nP = 9, nC = 0), that is, a single trading venue.

We consider two directions. First, we investigate what drives the illiquidity central and pe-
riphery agents face for changing degrees of market segmentation. We concentrate on (il)liquidity
as this is a more commonly reported variable in the empirical literature, and we leave the anal-
ysis of welfare and expected profits to Appendix C. Second, to complement the analysis in
Section 4 , we also analyze how much dealers can learn from prices under these market struc-
tures.

The left and center panels in Figure C.1 show the average illiquidity that a periphery,
1
tP

, and a central dealer, 1
tC

, face in each of the scenarios described above. We also plot the

average illiquidity that any agent in a centralized market, 1
tV

, faces. For easy comparison, all
the parameters are the same as in Section 5.1.

To highlight the intuition, we start with the extreme cases of market segmentation com-
paring illiquidity under a star network and in a centralized market.

C.4.1 Extreme cases of market segmentation with a star network

In this part, we compare illiquidity of dealers in a centralized market and that of a periphery
or central dealer in a star network.

The solid curve in Panels D and the curves in panel F in Figure 2 illustrate that compared to
any agent in a centralized market, the central agent in the star faces higher trading price impact
in general, but the periphery agents tend to face smaller price impact when the correlation
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across values is sufficiently high. We partially prove this result. The following proposition
states that if ρ is sufficiently large, illiquidity for the central agent is larger, while illiquidity
for the periphery agents is lower than that for an agent in a centralized market and, when ρ
is sufficiently small, illiquidity for any agent in a star network is larger than the illiquidity for
any agent in a centralized market.

Proposition C.2

1. When ρ is sufficiently small, such that zV is sufficiently close to 1− 1
n−1 , then illiquidity

for any agent in a star network is larger than for any agent in a centralized market

2. In the common value limit, when ρ→ 1,

(a) illiquidity for a central agent is higher in a star network than for any agent in a
centralized market, and

(b) illiquidity for a periphery agent is lower in a star network than for any agent in a
centralized market.

Proof. The first part comes by the observation that as zV → 1− 1
n−1 , tV →∞, while tC and

tP are finite for these parameters. The second part comes from taking the limit ρ → 1 of the
ratio of the corresponding closed-form expressions we report in Appendices B.3 and B.2. In
particular,

lim
ρ→1

tV
tC

= (n− 1)
zC + zP − zCzP

(2− zP ) ((n− 1) zV − (n− 2))
=∞

lim
ρ→1

tV
tP

= (n− 1)
zC + zP − zCzP

(2− zC) ((n− 1) zV − (n− 2))
=
n− 1

n
< 1

Similarly to the comparison between the complete OTC network and the centralized market
in Section 5.1.2, there are two main forces that drive the illiquidity ratios tV

tC
and tV

tP
. First,

the best response function (31) of a dealer in a centralized market is steeper and has a larger
intercept than the best response function (26) of central and periphery dealers in the star OTC
network. Simple algebra shows that if, counterfactually, the adverse selection parameters were
equal, zP = zC = zV then tV

tC
|zV =zC=zP = tV

tP
|zV =zC=zP > 1, that is, illiquidity for any agents

in the OTC market would be higher than for any agent in the centralized market. This is the
effect which dominates when ρ is small.

Second, parameters zC , zV and zP differ. As we stated in Proposition 9 central agents face
less liquid markets than periphery agents, 1

tP
< 1

tC
because periphery agents are more concerned

about adverse selection (zC < zP ). This implies that tV
tC

> tV
tP

and difference is increasing for
higher ρ. In fact, in the common value the central agent faces an infinitely illiquid market
in the sense that tC → 0, but consumers provide a relatively liquid trading environment for
periphery agents. For periphery agents this is sufficiently strong to reduce their price impact
below the centralized market level as stated in the second part of the proposition.

C.4.2 Intermediate cases of market segmentation with a star network

Interestingly, while the illiquidity a central agent faces is monotonic in segmentation, the illiq-
uidity a periphery agents face is not. We see in left panel of Figure C.1 is how the relative

70



Figure C.1: Illiquidity on segmented markets. We show our measure of illiquidity for central
agents , 1

tC
, (left panel) and for periphery agents, 1

tP
, (right panel) when there are 8 trading

venues (dotted), 4 trading venues (dashed), 2 trading venues (dash-dotted), and in the central-
ized market (solid) as a function of the correlation across values, ρ. Other parameter values
are σ2

θ = 1, σ2
ε = 0.1, B = 1.

strength of the two forces identified in Section C.4.1 plays out in the four scenarios we con-
sider. First, related to the effect of decentralization on best response functions, illiquidity for
any agent decreases as the market structure approaches a centralized market. Second,the effect
coming from the differing weights of zC and zP is weaker in more centralized markets. The
reason is that as central dealers observe less prices in more centralized markets, they put a
larger weight, zC in each price, implying a smaller difference between zP and zC . This is the
reason why the illiquidity a periphery agent faces under the 2 trading venues structure increases
with ρ almost as fast as in centralized markets. With 4 venues the effect of ρ is weaker.

Turning to the effect of segmentation on learning, note that for the central dealer prices are
fully revealing under any of the segmented market structures in this exercise. This is because
each price she observes is a weighted sum of her own signal and the sum of signals of the
periphery dealers trading in each venue. Hence, the prices the central dealer observes represent
a sufficient statistic for all the useful information in the economy. This would not be the case
if there were more than one dealer at the central trading post.

In contrast, as it is shown in the right panel of Figure C.1 a periphery agent in a segmented
market always learns less than the central agent, or any agent in a centralized market. Inter-
estingly, for small correlation across values, ρ, a periphery agent in a more segmented market
learns more, while for a sufficiently large correlation across values the opposite is true. The
intuition relies on the relative strength of opposing forces. The price a periphery agent learns
from is a weighted average of the sum of posteriors of periphery agents in the same trading
post and the posterior of the central agent. The posterior of the central agent is more infor-
mative than any of the posteriors that periphery agent at the same trading post have. The
more segmented the market is, the easier is for a dealer at a periphery trading post to isolate
the posterior of the central dealer (for example, in the baseline star network, any price reveals
the posterior of the central dealer perfectly). At the same time, the sum of the posteriors of
periphery dealers at a periphery trading post is more informative in a less segmented market,
as the noise in the signal, as well as the private value components tend to cancel out. This
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latter effect helps learning more when the private value component is more important, that is,
when ρ is small. This explains the pattern in the right panel of Figure C.1.

C.5 Welfare and expected profit in the star network

Finally, we illustrate with the following figure how expected profit and welfare changes with
market segmentation. We leave the detailed analysis for future research and highlight only two
interesting observations. First, as trading intensities were not monotonic for the periphery in
the degree of segmentation, expected profit is not monotonic either. Also, total welfare is also
not monotonic in segmentation.
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